2XWO image
Deposition Date 2010-11-04
Release Date 2011-11-16
Last Version Date 2023-12-20
Entry Detail
PDB ID:
2XWO
Title:
SiaP R147E mutant in complex with sialylamide
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.54 Å
R-Value Free:
0.17
R-Value Work:
0.13
R-Value Observed:
0.13
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:SIALIC ACID-BINDING PERIPLASMIC PROTEIN SIAP
Gene (Uniprot):siaP
Mutations:YES
Chain IDs:A
Chain Length:312
Number of Molecules:1
Biological Source:HAEMOPHILUS INFLUENZAE
Ligand Molecules
Primary Citation
Tripartite ATP-Independent Periplasmic (Trap) Transporters Use an Arginine-Mediated Selectivity Filter for High Affinity Substrate Binding.
J.Biol.Chem. 290 27113 ? (2015)
PMID: 26342690 DOI: 10.1074/JBC.M115.656603

Abstact

Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates.

Legend

Protein

Chemical

Disease

Primary Citation of related structures