2WPD image
Deposition Date 2009-08-05
Release Date 2010-07-07
Last Version Date 2023-12-20
Entry Detail
PDB ID:
2WPD
Keywords:
Title:
The Mg.ADP inhibited state of the yeast F1c10 ATP synthase
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
3.43 Å
R-Value Free:
0.29
R-Value Work:
0.28
R-Value Observed:
0.28
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:ATP SYNTHASE SUBUNIT ALPHA, MITOCHONDRIAL
Gene (Uniprot):ATP1
Chain IDs:A, B, C
Chain Length:510
Number of Molecules:3
Biological Source:SACCHAROMYCES CEREVISIAE
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:ATP SYNTHASE SUBUNIT BETA, MITOCHONDRIAL
Gene (Uniprot):ATP2
Chain IDs:D, E, F
Chain Length:478
Number of Molecules:3
Biological Source:SACCHAROMYCES CEREVISIAE
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:ATP SYNTHASE SUBUNIT GAMMA, MITOCHONDRIAL
Gene (Uniprot):ATP3
Chain IDs:G
Chain Length:278
Number of Molecules:1
Biological Source:SACCHAROMYCES CEREVISIAE
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:ATP SYNTHASE SUBUNIT DELTA, MITOCHONDRIAL
Gene (Uniprot):ATP16
Chain IDs:H
Chain Length:138
Number of Molecules:1
Biological Source:SACCHAROMYCES CEREVISIAE
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:ATP SYNTHASE SUBUNIT EPSILON, MITOCHONDRIAL
Gene (Uniprot):ATP15
Chain IDs:I
Chain Length:61
Number of Molecules:1
Biological Source:SACCHAROMYCES CEREVISIAE
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:ATP SYNTHASE SUBUNIT 9, MITOCHONDRIAL
Gene (Uniprot):OLI1
Chain IDs:J, K, L, M, N, O, P, Q, R, S
Chain Length:76
Number of Molecules:10
Biological Source:SACCHAROMYCES CEREVISIAE
Primary Citation

Abstact

The F(1)c(10) subcomplex of the yeast F(1)F(0)-ATP synthase includes the membrane rotor part c(10)-ring linked to a catalytic head, (αβ)(3), by a central stalk, γδε. The Saccharomyces cerevisiae yF(1)c(10)·ADP subcomplex was crystallized in the presence of Mg·ADP, dicyclohexylcarbodiimide (DCCD), and azide. The structure was solved by molecular replacement using a high resolution model of the yeast F(1) and a bacterial c-ring model with 10 copies of the c-subunit. The structure refined to 3.43-Å resolution displays new features compared with the original yF(1)c(10) and with the yF(1) inhibited by adenylyl imidodiphosphate (AMP-PNP) (yF(1)(I-III)). An ADP molecule was bound in both β(DP) and β(TP) catalytic sites. The α(DP)-β(DP) pair is slightly open and resembles the novel conformation identified in yF(1), whereas the α(TP)-β(TP) pair is very closed and resembles more a DP pair. yF(1)c(10)·ADP provides a model of a new Mg·ADP-inhibited state of the yeast F(1). As for the original yF(1) and yF(1)c(10) structures, the foot of the central stalk is rotated by ∼40 ° with respect to bovine structures. The assembly of the F(1) central stalk with the F(0) c-ring rotor is mainly provided by electrostatic interactions. On the rotor ring, the essential cGlu(59) carboxylate group is surrounded by hydrophobic residues and is not involved in hydrogen bonding.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback