2WND image
Deposition Date 2009-07-08
Release Date 2009-11-03
Last Version Date 2024-10-09
Entry Detail
PDB ID:
2WND
Title:
Structure of an S100A7 triple mutant
Biological Source:
Source Organism:
HOMO SAPIENS (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.60 Å
R-Value Free:
0.25
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
I 41 2 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:PROTEIN S100-A7
Gene (Uniprot):S100A7
Mutagens:YES
Chain IDs:A
Chain Length:96
Number of Molecules:1
Biological Source:HOMO SAPIENS
Primary Citation
Structural and Functional Characterization of a Triple Mutant Form of S100A7 Defective for Jab1 Binding.
Protein Sci. 18 2615 ? (2009)
PMID: 19844956 DOI: 10.1002/PRO.274

Abstact

S100A7 (psoriasin) is a calcium- and zinc-binding protein implicated in breast cancer. We have shown previously that S100A7 enhances survival mechanisms in breast cells through an interaction with c-jun activation domain binding protein 1 (Jab1), and an engineered S100A7 triple mutant (Asp(56)Gly, Leu(78)Met, and Gln(88)Lys-S100A7(3)) ablates Jab1 binding. We extend these results to include defined breast cancer cell lines and demonstrate a disrupted S100A7(3)/Jab1 phenotype is maintained. To establish the basis for the abrogated Jab1 binding, we have recombinantly produced S100A7(3), demonstrated that it retains the ability to form an exceptionally thermostable dimer, and solved the three dimensional crystal structure to 1.6 A. Despite being positioned at the dimer interface, the Leu(78)Met mutation is easily accommodated and contributes to a methionine-rich pocket formed by Met(12), Met(15), and Met(34). In addition to altering the surface charge, the Gln(88)Lys mutation results in a nearby rotameric shift in Tyr(85), leading to a substantially reorganized surface cavity and may influence zinc binding. The final mutation of Asp(56) to Gly results in the largest structural perturbation shortening helix IV by one full turn. It is noteworthy that position 56 lies in one of two divergent clusters between S100A7 and the functionally distinct yet highly homologous S100A15. The structure of S100A7(3) provides a unique perspective from which to characterize the S100A7-Jab1 interaction and better understand the distinct functions between S100A7, and it is closely related paralog S100A15.

Legend

Protein

Chemical

Disease

Primary Citation of related structures