2WKP image
Deposition Date 2009-06-16
Release Date 2009-08-18
Last Version Date 2023-12-13
Entry Detail
PDB ID:
2WKP
Title:
Structure of a photoactivatable Rac1 containing Lov2 Wildtype
Biological Source:
Source Organism:
AVENA SATIVA (Taxon ID: 4498)
HOMO SAPIENS (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.19
R-Value Work:
0.16
R-Value Observed:
0.16
Space Group:
P 32 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:NPH1-1, RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 1
Gene (Uniprot):NPH1-1, RAC1
Mutations:YES
Chain IDs:A
Chain Length:332
Number of Molecules:1
Biological Source:AVENA SATIVA, HOMO SAPIENS
Primary Citation
A Genetically Encoded Photoactivatable Rac Controls the Motility of Living Cells.
Nature 461 104 ? (2009)
PMID: 19693014 DOI: 10.1038/NATURE08241

Abstact

The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties or using photoreactive small-molecule ligands. However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells. Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin, sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision. Their mutual regulation remains controversial, with data indicating that Rac inhibits and/or activates Rho. Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV-Rac interactions that will facilitate extension of this photoactivation approach to other proteins.

Legend

Protein

Chemical

Disease

Primary Citation of related structures