2W7V image
Entry Detail
PDB ID:
2W7V
Title:
periplasmic domain of EpsL from Vibrio parahaemolyticus
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2009-01-06
Release Date:
2010-03-31
Method Details:
Experimental Method:
Resolution:
2.30 Å
R-Value Free:
0.25
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 62
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:GENERAL SECRETION PATHWAY PROTEIN L
Chain IDs:A, B
Chain Length:95
Number of Molecules:2
Biological Source:VIBRIO PARAHAEMOLYTICUS
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET SELENOMETHIONINE
Primary Citation
The Dimer Formed by the Periplasmic Domain of Epsl from the Type 2 Secretion System of Vibrio Parahaemolyticus.
J.Struct.Biol. 168 313 ? (2009)
PMID: 19646531 DOI: 10.1016/J.JSB.2009.07.022

Abstact

The Type 2 Secretion System (T2SS), occurring in many Gram-negative bacteria, is responsible for the transport of a diversity of proteins from the periplasm across the outer membrane into the extracellular space. In Vibrio cholerae, the T2SS secretes several unrelated proteins including the major virulence factor cholera toxin. The T2SS consists of three sub-assemblies, one of which is the Inner Membrane Complex which contains multiple copies of five proteins, including the bitopic membrane protein EpsL. Here, we report the 2.3A resolution crystal structure of the periplasmic domain of EpsL (peri-EpsL) from Vibrio parahaemolyticus, which is 56% identical in sequence to its homolog in V. cholerae. The domain adopts a circular permutation of the "common" ferredoxin fold with two contiguous sub-domains. Remarkably, this infrequently occurring permutation was for the first time observed in the periplasmic domain of EpsM (peri-EpsM), another T2SS protein which interacts with EpsL. These two domains are 18% identical in sequence which may indicate a common evolutionary origin. Both peri-EpsL and peri-EpsM form dimers, but the organization of the subunits in these dimers appears to be entirely different. We have previously shown that the cytoplasmic domain of EpsL is also dimeric and forms a heterotetramer with the first domain of the "secretion ATPase" EpsE. The latter enzyme is most likely hexameric. The possible consequences of the combination of the different symmetries of EpsE and EpsL for the architecture of the T2SS are discussed.

Legend

Protein

Chemical

Disease

Primary Citation of related structures