2VWH image
Deposition Date 2008-06-24
Release Date 2009-01-13
Last Version Date 2023-12-13
Entry Detail
PDB ID:
2VWH
Keywords:
Title:
Haloferax mediterranei glucose dehydrogenase in complex with NADP, Zn and glucose.
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.03 Å
R-Value Free:
0.15
R-Value Work:
0.13
R-Value Observed:
0.13
Space Group:
I 2 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:GLUCOSE DEHYDROGENASE
Gene (Uniprot):gdh
Chain IDs:A
Chain Length:357
Number of Molecules:1
Biological Source:HALOFERAX MEDITERRANEI
Primary Citation
Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily.
Proc. Natl. Acad. Sci. U.S.A. 106 779 784 (2009)
PMID: 19131516 DOI: 10.1073/pnas.0807529106

Abstact

Despite being the subject of intensive investigations, many aspects of the mechanism of the zinc-dependent medium chain alcohol dehydrogenase (MDR) superfamily remain contentious. We have determined the high-resolution structures of a series of binary and ternary complexes of glucose dehydrogenase, an MDR enzyme from Haloferax mediterranei. In stark contrast to the textbook MDR mechanism in which the zinc ion is proposed to remain stationary and attached to a common set of protein ligands, analysis of these structures reveals that in each complex, there are dramatic differences in the nature of the zinc ligation. These changes arise as a direct consequence of linked movements of the zinc ion, a zinc-bound bound water molecule, and the substrate during progression through the reaction. These results provide evidence for the molecular basis of proton traffic during catalysis, a structural explanation for pentacoordinate zinc ion intermediates, a unifying view for the observed patterns of metal ligation in the MDR family, and highlight the importance of dynamic fluctuations at the metal center in changing the electrostatic potential in the active site, thereby influencing the proton traffic and hydride transfer events.

Legend

Protein

Chemical

Disease

Primary Citation of related structures