2R93 image
Deposition Date 2007-09-12
Release Date 2007-11-27
Last Version Date 2024-02-21
Entry Detail
PDB ID:
2R93
Keywords:
Title:
Elongation complex of RNA polymerase II with a hepatitis delta virus-derived RNA stem loop
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
4.00 Å
R-Value Free:
0.24
R-Value Work:
0.21
Space Group:
C 2 2 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB1
Gene (Uniprot):RPO21
Chain IDs:B (auth: A)
Chain Length:1733
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB2
Gene (Uniprot):RPB2
Chain IDs:C (auth: B)
Chain Length:1224
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB3
Gene (Uniprot):RPB3
Chain IDs:D (auth: C)
Chain Length:318
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB4
Gene (Uniprot):RPB4
Chain IDs:E (auth: D)
Chain Length:221
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC1
Gene (Uniprot):RPB5
Chain IDs:F (auth: E)
Chain Length:215
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC2
Gene (Uniprot):RPO26
Chain IDs:G (auth: F)
Chain Length:155
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB7
Gene (Uniprot):RPB7
Chain IDs:H (auth: G)
Chain Length:171
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC3
Gene (Uniprot):RPB8
Chain IDs:I (auth: H)
Chain Length:146
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB9
Gene (Uniprot):RPB9
Chain IDs:J (auth: I)
Chain Length:122
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC5
Gene (Uniprot):RPB10
Chain IDs:K (auth: J)
Chain Length:70
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB11
Gene (Uniprot):RPB11
Chain IDs:L (auth: K)
Chain Length:120
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC4
Gene (Uniprot):RPC10
Chain IDs:M (auth: L)
Chain Length:70
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polyribonucleotide
Molecule:RNA (5'-R(*UP*GP*AP*UP*UP*CP*UP*CP*UP*AP*UP*CP*GP*GP*AP*AP*UP*C)-3')
Chain IDs:A (auth: R)
Chain Length:18
Number of Molecules:1
Biological Source:
Primary Citation
Molecular basis of RNA-dependent RNA polymerase II activity.
Nature 450 445 449 (2007)
PMID: 18004386 DOI: 10.1038/nature06290

Abstact

RNA polymerase (Pol) II catalyses DNA-dependent RNA synthesis during gene transcription. There is, however, evidence that Pol II also possesses RNA-dependent RNA polymerase (RdRP) activity. Pol II can use a homopolymeric RNA template, can extend RNA by several nucleotides in the absence of DNA, and has been implicated in the replication of the RNA genomes of hepatitis delta virus (HDV) and plant viroids. Here we show the intrinsic RdRP activity of Pol II with only pure polymerase, an RNA template-product scaffold and nucleoside triphosphates (NTPs). Crystallography reveals the template-product duplex in the site occupied by the DNA-RNA hybrid during transcription. RdRP activity resides at the active site used during transcription, but it is slower and less processive than DNA-dependent activity. RdRP activity is also obtained with part of the HDV antigenome. The complex of transcription factor IIS (TFIIS) with Pol II can cleave one HDV strand, create a reactive stem-loop in the hybrid site, and extend the new RNA 3' end. Short RNA stem-loops with a 5' extension suffice for activity, but their growth to a critical length apparently impairs processivity. The RdRP activity of Pol II provides a missing link in molecular evolution, because it suggests that Pol II evolved from an ancient replicase that duplicated RNA genomes.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback