2QRW image
Entry Detail
PDB ID:
2QRW
Title:
Crystal structure of Mycobacterium tuberculosis trHbO WG8F mutant
Biological Source:
Host Organism:
PDB Version:
Deposition Date:
2007-07-30
Release Date:
2007-11-06
Method Details:
Experimental Method:
Resolution:
1.93 Å
R-Value Free:
0.21
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
I 41 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Hemoglobin-like protein HbO
Mutations:W88F
Chain IDs:A, B, C, D, E, F, G, H, I, J, K, L
Chain Length:128
Number of Molecules:12
Biological Source:Mycobacterium tuberculosis
Primary Citation
The Roles of Tyr(CD1) and Trp(G8) in Mycobacterium tuberculosis Truncated Hemoglobin O in Ligand Binding and on the Heme Distal Site Architecture
Biochemistry 46 11440 11450 (2007)
PMID: 17887774 DOI: 10.1021/bi7010288

Abstact

The crystal structure of the cyano-met form of Mt-trHbO revealed two unusual distal residues Y(CD1) and W(G8) forming a hydrogen-bond network with the heme-bound ligand [Milani, M., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 5766-5771]. W(G8) is an invariant residue in group II and group III trHbs and has no counterpart in other globins. A previous study reported that changing Y(CD1) for a Phe causes a significant increase in the O2 combination rate, but almost no change in the O2 dissociation rate [Ouellet, H., et al. (2003) Biochemistry 42, 5764-5774]. Here we investigated the role of the W(G8) in ligand binding by using resonance Raman spectroscopy, stopped-flow spectrophotometry, and X-ray crystallography. For this purpose, W(G8) was changed, by site-directed mutagenesis, to a Phe in both the wild-type protein and the mutant Y(CD1)F to create the single mutant W(G8)F and the double mutant Y(CD1)F/W(G8)F, respectively. Resonance Raman results suggest that W(G8) interacts with the heme-bound O2 and CO, as evidenced by the increase of the Fe-O2 stretching mode from 559 to 564 cm-1 and by the lower frequency of the Fe-CO stretching modes (514 and 497 cm-1) compared to that of the wild-type protein. Mutation of W(G8) to Phe indicates that this residue controls ligand binding, as evidenced by a dramatic increase of the combination rates of both O2 and CO. Also, the rate of O2 dissociation showed a 90-1000-fold increase in the W(G8)F and Y(CD1)F/W(G8)F mutants, that is in sharp contrast with the values obtained for the other distal mutants Y(B10)F and Y(CD1)F [Ouellet, H., et al. (2003) Biochemistry 42, 5764-5774]. Taken together, these data indicate a pivotal role for the W(G8) residue in O2 binding and stabilization.

Legend

Protein

Chemical

Disease

Primary Citation of related structures