2PKR image
Deposition Date 2007-04-18
Release Date 2007-06-19
Last Version Date 2024-10-09
Entry Detail
PDB ID:
2PKR
Keywords:
Title:
Crystal structure of (A+CTE)4 chimeric form of photosyntetic glyceraldehyde-3-phosphate dehydrogenase, complexed with NADP
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.40 Å
R-Value Free:
0.25
R-Value Work:
0.24
R-Value Observed:
0.24
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Glyceraldehyde-3-phosphate dehydrogenase Aor
Gene (Uniprot):GAPA
Chain IDs:A (auth: O), B (auth: R), C (auth: P), D (auth: Q), E (auth: A), F (auth: B), G (auth: C), H (auth: D), I (auth: H), J (auth: I), K (auth: L), L (auth: M)
Chain Length:365
Number of Molecules:12
Biological Source:Spinacia oleracea
Primary Citation
Molecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde-3-phosphate dehydrogenase.
Proc.Natl.Acad.Sci.Usa 104 11109 11114 (2007)
PMID: 17573533 DOI: 10.1073/pnas.0611636104

Abstact

Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a light-regulated, NAD(P)H-dependent enzyme involved in plant photosynthetic carbon reduction. Unlike lower photosynthetic organisms, which only contain A(4)-GAPDH, the major GAPDH isoform of land plants is made up of A and B subunits, the latter containing a C-terminal extension (CTE) with fundamental regulatory functions. Light-activation of AB-GAPDH depends on the redox state of a pair of cysteines of the CTE, which can form a disulfide bond under control of thioredoxin f, leading to specific inhibition of the NADPH-dependent activity. The tridimensional structure of A(2)B(2)-GAPDH from spinach chloroplasts, crystallized in the oxidized state, shows that each disulfide-containing CTE is docked into a deep cleft between a pair of A and B subunits. The structure of the CTE was derived from crystallographic data and computational modeling and confirmed by site-specific mutagenesis. Structural analysis of oxidized A(2)B(2)-GAPDH and chimeric mutant [A+CTE](4)-GAPDH revealed that Arg-77, which is essential for coenzyme specificity and high NADPH-dependent activity, fails to interact with NADP in these kinetically inhibited GAPDH tetramers and is attracted instead by negative residues of oxidized CTE. Other subtle changes in catalytic domains and overall conformation of the tetramers were noticed in oxidized A(2)B(2)-GAPDH and [A+CTE](4)-GAPDH, compared with fully active A(4)-GAPDH. The CTE is envisioned as a redox-sensitive regulatory domain that can force AB-GAPDH into a kinetically inhibited conformation under oxidizing conditions, which also occur during dark inactivation of the enzyme in vivo.

Legend

Protein

Chemical

Disease

Primary Citation of related structures