2O9X image
Deposition Date 2006-12-14
Release Date 2007-01-16
Last Version Date 2024-11-06
Entry Detail
PDB ID:
2O9X
Title:
Crystal Structure Of A Putative Redox Enzyme Maturation Protein From Archaeoglobus Fulgidus
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
3.40 Å
R-Value Free:
0.28
R-Value Work:
0.23
R-Value Observed:
0.23
Space Group:
P 65 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Reductase, assembly protein
Gene (Uniprot):AF_0173
Chain IDs:A
Chain Length:181
Number of Molecules:1
Biological Source:Archaeoglobus fulgidus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET SELENOMETHIONINE
Ligand Molecules
Primary Citation
An extremely SAD case: structure of a putative redox-enzyme maturation protein from Archaeoglobus fulgidus at 3.4 A resolution.
Acta Crystallogr.,Sect.D 63 348 354 (2007)
PMID: 17327672 DOI: 10.1107/S0907444906055065

Abstact

This paper describes the crystal structure of AF0173, a putative redox-enzyme maturation protein (REMP) from Archaeoglobus fulgidus. The REMPs serve as chaperones in the maturation of extracytoplasmic oxidoreductases in archaea and bacteria. The all-helical subunits of AF0173 form a dimer arising from the interaction of residues located in a funnel-shaped cavity on one subunit surface with an uncut expression tag from the other subunit. This cavity is likely to represent a binding site for the twin-arginine motif that interacts with REMPs. The conservation of the overall fold in AF0173 and bacterial REMPs as well as the presence of conserved residues in their putative binding sites indicates that REMPs act in a similar manner in archaea and bacteria despite their limited sequence similarity. A model of the binding of the twin-arginine motif by AF0173 is suggested. The solution of the AF0173 structure by the single anomalous dispersion method represents an extreme case of SAD structure determination: low resolution (3.4 A), the absence of NCS and the presence of only two anomalously scattering atoms in the asymmetric unit. An unusually high solvent content (73%) turned out to be important for the success of the density-modification procedures.

Legend

Protein

Chemical

Disease

Primary Citation of related structures