2M8S image
Deposition Date 2013-06-03
Release Date 2014-04-16
Last Version Date 2024-05-01
Entry Detail
PDB ID:
2M8S
Title:
NMR Structure of the Cytoplasmic Tail of the Membrane Form of Heparin-binding EGF-like Growth Factor (proHB-EGF-CT) Complexed with the Ubiquitin Homology Domain of Bcl-2-associated Athanogene 1 from Mus musculus (mBAG-1-UBH)
Biological Source:
Source Organism:
Mus musculus (Taxon ID: 10090)
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Conformers Calculated:
5000
Conformers Submitted:
18
Selection Criteria:
structures with the lowest energy
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:BAG family molecular chaperone regulator 1
Gene (Uniprot):Bag1
Chain IDs:A
Chain Length:97
Number of Molecules:1
Biological Source:Mus musculus
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proheparin-binding EGF-like growth factor
Gene (Uniprot):HBEGF
Chain IDs:B
Chain Length:24
Number of Molecules:1
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
Nuclear Magnetic Resonance Structure of the Cytoplasmic Tail of Heparin Binding EGF-like Growth Factor (proHB-EGF-CT) Complexed with the Ubiquitin Homology Domain of Bcl-2-Associated Athanogene 1 from Mus musculus (mBAG-1-UBH).
Biochemistry 53 1935 1946 (2014)
PMID: 24628338 DOI: 10.1021/bi5003019

Abstact

The membrane form of heparin binding EGF-like growth factor (proHB-EGF) yields secreted HB-EGF and a membrane-anchored cytoplasmic tail (proHB-EGF-CT), which may be targeted to the nuclear membrane after a shedding stimulus. Bcl-2-associated athanogene 1 (BAG-1) accumulates in the nuclei and inhibits apoptosis in adenoma-derived cell lines. The maintenance of high levels of nuclear BAG-1 enhances cell survival. However, the ubiquitin homology domain of BAG-1 from Mus musculus (mBAG-1-UBH) is proposed to interact with proHB-EGF-CT, and this interaction may enhance the cytoprotection against the apoptosis inducer. The mechanism of the synergistic anti-apoptosis function of proHB-EGF-CT and mBAG-1-UBH is still unknown. We offer a hypothesis that proHB-EGF-CT can maintain high levels of nuclear BAG-1. In this study, we first report the three-dimensional nuclear magnetic resonance structure of proHB-EGF-CT complexed with mBAG-1-UBH. In the structure of the complex, the residues in the C-terminus and one turn between β-strands β1 and β2 of mBAG-1-UBH bind to two terminals of proHB-EGF-CT, which folds into a loop with end-to-end contact. This end-to-end folding of proHB-EGF-CT causes the basic amino acids to colocalize and form a positively charged groove. The dominant forces in the binding interface between proHB-EGF-CT and mBAG-1-UBH are charge-charge interactions. On the basis of our mutagenesis results, the basic amino acid cluster in the N-terminus of proHB-EGF-CT is the crucial binding site for mBAG-1-UBH, whereas another basic amino acid in the C-terminus facilitates this interaction. Interestingly, the mBAG-1-UBH binding region on the proHB-EGF-CT peptide is also involved in the region found to be important for nuclear envelope targeting, supporting the hypothesis that proHB-EGF-CT is most likely able to trigger the nuclear translocation of BAG-1 in keeping its level high.

Legend

Protein

Chemical

Disease

Primary Citation of related structures