2M5G image
Deposition Date 2013-02-24
Release Date 2013-11-13
Last Version Date 2024-11-13
Entry Detail
PDB ID:
2M5G
Title:
Solution structure of FimA wt
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Conformers Calculated:
100
Conformers Submitted:
20
Selection Criteria:
structures with the lowest energy
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Type-1 fimbrial protein, A chain
Gene (Uniprot):fimA
Chain IDs:A
Chain Length:159
Number of Molecules:1
Biological Source:Escherichia coli
Ligand Molecules
Primary Citation
Intramolecular donor strand complementation in the E. coli type 1 pilus subunit FimA explains the existence of FimA monomers as off-pathway products of pilus assembly that inhibit host cell apoptosis.
J.Mol.Biol. 426 542 549 (2014)
PMID: 24184277 DOI: 10.1016/j.jmb.2013.10.029

Abstact

Type 1 pili are filamentous organelles mediating the attachment of uropathogenic Escherichia coli to epithelial cells of host organisms. The helical pilus rod consists of up to 3000 copies of the main structural subunit FimA that interact via donor strand complementation, where the incomplete Ig-like fold of FimA is completed by insertion of the N-terminal extension (donor strand) of the following FimA subunit. Recently, it was shown that FimA also exists in a monomeric, assembly-incompetent form and that FimA monomers act as inhibitors of apoptosis in infected host cells. Here we present the NMR structure of monomeric wild-type FimA with its natural N-terminal donor strand complementing the Ig fold. Compared to FimA subunits in the assembled pilus, intramolecular self-complementation in the monomer stabilizes the FimA fold with significantly less interactions, and the natural FimA donor strand is inserted in the opposite orientation. In addition, we show that a motif of two glycine residues in the FimA donor strand, separated by five residues, is the prerequisite of the alternative, parallel donor strand insertion mechanism in the FimA monomer and that this motif is preserved in FimA homologs of many enteroinvasive pathogens. We conclude that FimA is a unique case of a protein with alternative, functionally relevant folding possibilities, with the FimA polymer forming the highly stable pilus rod and the FimA monomer promoting pathogen propagation by apoptosis suppression of infected epithelial target cells.

Legend

Protein

Chemical

Disease

Primary Citation of related structures