2LJE image
Deposition Date 2011-09-11
Release Date 2011-10-05
Last Version Date 2024-11-20
Entry Detail
PDB ID:
2LJE
Title:
Biphosphorylated (747pY, 759pY) beta3 integrin cytoplasmic tail under membrane mimetic conditions
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Conformers Calculated:
100
Conformers Submitted:
15
Selection Criteria:
structures with the lowest energy
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Integrin beta-3
Gene (Uniprot):ITGB3
Chain IDs:A
Chain Length:67
Number of Molecules:1
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
PTR A TYR O-PHOSPHOTYROSINE
Ligand Molecules
Primary Citation
Tyrosine phosphorylation as a conformational switch: a case study of integrin Beta3 cytoplasmic tail.
J.Biol.Chem. 286 40943 40953 (2011)
PMID: 21956114 DOI: 10.1074/jbc.M111.231951

Abstact

Reversible protein phosphorylation is vital for many fundamental cellular processes. The actual impact of adding and removing phosphate group(s) is 3-fold: changes in the local/global geometry, alterations in the electrostatic potential and, as the result of both, modified protein-target interactions. Here we present a comprehensive structural investigation of the effects of phosphorylation on the conformational as well as functional states of a crucial cell surface receptor, α(IIb)β(3) integrin. We have analyzed phosphorylated (Tyr(747) and Tyr(759)) β(3) integrin cytoplasmic tail (CT) primarily by NMR, and our data demonstrate that under both aqueous and membrane-mimetic conditions, phosphorylation causes substantial conformational rearrangements. These changes originate from novel ionic interactions and revised phospholipid binding. Under aqueous conditions, the critical Tyr(747) phosphorylation prevents β(3)CT from binding to its heterodimer partner α(IIb)CT, thus likely maintaining an activated state of the receptor. This conclusion was tested in vivo and confirmed by integrin-dependent endothelial cells adhesion assay. Under membrane-mimetic conditions, phosphorylation results in a modified membrane embedding characterized by significant changes in the secondary structure pattern and the overall fold of β(3)CT. Collectively these data provide unique molecular insights into multiple regulatory roles of phosphorylation.

Legend

Protein

Chemical

Disease

Primary Citation of related structures