2L0N image
Deposition Date 2010-07-08
Release Date 2011-03-09
Last Version Date 2024-05-01
Entry Detail
PDB ID:
2L0N
Title:
DsbB3 peptide structure in 70% TFE
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Conformers Calculated:
100
Conformers Submitted:
20
Selection Criteria:
target function
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Oxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I
Chain IDs:A
Chain Length:30
Number of Molecules:1
Biological Source:Escherichia coli BW2952
Ligand Molecules
Primary Citation
Folding determinants of disulfide bond forming protein B explored by solution nuclear magnetic resonance spectroscopy.
Proteins 79 1365 1375 (2011)
PMID: 21337621 DOI: 10.1002/prot.22877

Abstact

The two-stage model for membrane protein folding postulates that individual helices form first and are subsequently packed against each other. To probe the two-stage model, the structures of peptides representing individual transmembrane helices of the disulfide bond forming protein B have been studied in trifluoroethanol solution as well as in detergent micelles using nuclear magnetic resonance (NMR) and circular dichroism spectroscopy. In TFE solution, peptides showed well-defined α-helical structures. Peptide structures in TFE were compared to the structures of full-length protein obtained by X-ray crystallography and NMR. The extent of α-helical secondary structure coincided well, lending support for the two-stage model for membrane protein folding. However, the conformation of some amino acid side chains differs between the structures of peptide and full-length protein. In micellar solution, the peptides also adopted a helical structure, albeit of reduced definition. Using measurements of paramagnetic relaxation enhancement, peptides were confirmed to be embedded in micelles. These observations may indicate that in the native protein, tertiary interactions additionally stabilize the secondary structure of the individual transmembrane helices.

Legend

Protein

Chemical

Disease

Primary Citation of related structures