2KLT image
Deposition Date 2009-07-08
Release Date 2009-08-18
Last Version Date 2024-05-22
Entry Detail
PDB ID:
2KLT
Title:
Second Ca2+ binding domain of NCX1.3
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Conformers Calculated:
100
Conformers Submitted:
20
Selection Criteria:
structures with the lowest energy
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Sodium/calcium exchanger 1
Chain IDs:A
Chain Length:163
Number of Molecules:1
Biological Source:Canis familiaris
Primary Citation
Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism.
Proc.Natl.Acad.Sci.USA 106 14333 14338 (2009)
PMID: 19667209 DOI: 10.1073/pnas.0902171106

Abstact

Regulation of ion-transport in the Na(+)/Ca(2+) exchanger (NCX) occurs via its cytoplasmic Ca(2+)-binding domains, CBD1 and CBD2. Here, we present a mechanism for NCX activation and inactivation based on data obtained using NMR, isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS). We initially determined the structure of the Ca(2+)-free form of CBD2-AD and the structure of CBD2-BD that represent the two major splice variant classes in NCX1. Although the apo-form of CBD2-AD displays partially disordered Ca(2+)-binding sites, those of CBD2-BD are entirely unstructured even in an excess of Ca(2+). Striking differences in the electrostatic potential between the Ca(2+)-bound and -free forms strongly suggest that Ca(2+)-binding sites in CBD1 and CBD2 form electrostatic switches analogous to C(2)-domains. SAXS analysis of a construct containing CBD1 and CBD2 reveals a conformational change mediated by Ca(2+)-binding to CBD1. We propose that the electrostatic switch in CBD1 and the associated conformational change are necessary for exchanger activation. The response of the CBD1 switch to intracellular Ca(2+) is influenced by the closely located cassette exons. We further propose that Ca(2+)-binding to CBD2 induces a second electrostatic switch, required to alleviate Na(+)-dependent inactivation of Na(+)/Ca(2+) exchange. In contrast to CBD1, the electrostatic switch in CBD2 is isoform- and splice variant-specific and allows for tailored exchange activities.

Legend

Protein

Chemical

Disease

Primary Citation of related structures