2K3F image
Deposition Date 2008-05-06
Release Date 2008-06-17
Last Version Date 2024-05-01
Entry Detail
PDB ID:
2K3F
Title:
Ribosomal protein L11 from Thermotoga maritima
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Conformers Calculated:
80
Conformers Submitted:
20
Selection Criteria:
structures with the lowest energy
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:50S ribosomal protein L11
Gene (Uniprot):rplK
Chain IDs:A
Chain Length:141
Number of Molecules:1
Biological Source:Thermotoga maritima
Ligand Molecules
Primary Citation
Domain reorientation and induced fit upon RNA binding: solution structure and dynamics of ribosomal protein L11 from Thermotoga maritima
ChemBioChem 6 1611 1618 (2005)
PMID: 16094695 DOI: 10.1002/cbic.200500091

Abstact

L11, a protein of the large ribosomal subunit, binds to a highly conserved domain of 23S rRNA and mediates ribosomal GTPase activity. Its C-terminal domain is the main determinant for rRNA binding, whereas its N-terminal domain plays only a limited role in RNA binding. The N-terminal domain is thought to be involved in interactions with elongation and release factors as well as with the antibiotics thiostrepton and micrococcin. This report presents the NMR solution structure of the full-length L11 protein from the thermophilic eubacterium Thermotoga maritima in its free form. The structure is based on a large number of orientational restraints derived from residual dipolar couplings in addition to conventional NOE-based restraints. The solution structure of L11 demonstrates that, in contrast to many other multidomain RNA-binding proteins, the relative orientation of the two domains is well defined. This is shown both by heteronuclear 15N-relaxation and residual dipolar-coupling data. Comparison of this NMR structure with the X-ray structure of RNA-bound L11, reveals that binding not only induces a rigidification of a flexible loop in the C-terminal domain, but also a sizeable reorientation of the N-terminal domain. The domain orientation in free L11 shows limited similarity to that of ribosome-bound L11 in complex with elongation factor, EF-G.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback