2JVN image
Deposition Date 2007-09-24
Release Date 2008-05-13
Last Version Date 2024-05-01
Entry Detail
PDB ID:
2JVN
Keywords:
Title:
Domain C of human PARP-1
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Conformers Calculated:
100
Conformers Submitted:
10
Selection Criteria:
structures with the least restraint violations
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Poly [ADP-ribose] polymerase 1
Gene (Uniprot):PARP1
Chain IDs:A
Chain Length:126
Number of Molecules:1
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif.
Biochemistry 47 5804 5813 (2008)
PMID: 18452307 DOI: 10.1021/bi800018a

Abstact

Poly(ADP-ribose) polymerase-1 (PARP-1) is a multimodular nuclear protein that participates in many fundamental cellular activities. Stimulated by binding to nicked DNA, PARP-1 catalyzes poly(ADP-ribosyl)ation of the acceptor proteins using NAD (+) as a substrate. In this work, NMR methods were used to determine the solution structure of human PARP-1 protein. Domain C was found to contain a zinc-binding motif of three antiparallel beta-strands with four conserved cysteines positioned to coordinate the metal ligand, in addition to a helical region. The zinc-binding motif is structurally reminiscent of the "zinc-ribbon" fold, but with a novel spacing between the conserved cysteines (CX2CX12CX 9C). Domain C alone does not appear to bind to DNA. Interestingly, domain C is essential for PARP-1 activity, since a mixture containing nicked DNA and the PARP-1 ABDEF domains has only basal enzymatic activity, while the addition of domain C to the mixture initiated NAD (+) hydrolysis and the formation of poly(ADP-ribose), as detected by an NMR-based assay and autoradiography. The structural model for domain C in solution provides an important framework for further studies aimed at improving our understanding of how the various domains within the complex PARP-1 enzyme play their respective roles in regulating the enzyme activity when cells are under conditions of genotoxic stress.

Legend

Protein

Chemical

Disease

Primary Citation of related structures