2IVI image
Entry Detail
PDB ID:
2IVI
Keywords:
Title:
Isopenicillin N Synthase From Aspergillus Nidulans (Anaerobic Ac- methyl-cyclopropylglycine Fe Complex)
Biological Source:
PDB Version:
Deposition Date:
2006-06-13
Release Date:
2007-04-10
Method Details:
Experimental Method:
Resolution:
1.30 Å
R-Value Free:
0.15
R-Value Work:
0.13
R-Value Observed:
0.13
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:ISOPENICILLIN N SYNTHETASE
Chain IDs:A (auth: B)
Chain Length:331
Number of Molecules:1
Biological Source:Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139)
Primary Citation

Abstact

Isopenicillin N synthase (IPNS), a non-heme iron oxidase central to penicillin and cephalosporin biosynthesis, catalyzes an energetically demanding chemical transformation to produce isopenicillin N from the tripeptide delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-valine (ACV). We describe the synthesis of two cyclopropyl-containing tripeptide analogues, delta-(l-alpha-aminoadipoyl)-l-cysteinyl-beta-methyl-d-cyclopropylglycine and delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-cyclopropylglycine, designed as probes for the mechanism of IPNS. We have solved the X-ray crystal structures of these substrates in complex with IPNS and propose a revised mechanism for the IPNS-mediated turnover of these compounds. Relative to the previously determined IPNS-Fe(II)-ACV structure, key differences exist in substrate orientation and water occupancy, which allow for an explanation of the differences in reactivity of these substrates.

Legend

Protein

Chemical

Disease

Primary Citation of related structures