2IMD image
Deposition Date 2006-10-04
Release Date 2007-06-12
Last Version Date 2025-03-26
Entry Detail
PDB ID:
2IMD
Keywords:
Title:
Structure of SeMet 2-hydroxychromene-2-carboxylate isomerase (HCCA isomerase)
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.60 Å
R-Value Free:
0.22
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 21 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:2-hydroxychromene-2-carboxylate isomerase
Gene (Uniprot):nahD
Chain IDs:A
Chain Length:203
Number of Molecules:1
Biological Source:Pseudomonas putida
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET SELENOMETHIONINE
Primary Citation
2-Hydroxychromene-2-carboxylic Acid Isomerase: A Kappa Class Glutathione Transferase from Pseudomonas putida
Biochemistry 46 6710 6722 (2007)
PMID: 17508726 DOI: 10.1021/bi700356u

Abstact

The enzyme 2-hydroxychromene-2-carboxylic acid (HCCA) isomerase catalyzes the glutathione (GSH)-dependent interconversion (Keq = 1.5) of HCCA and trans-o-hydroxybenzylidene pyruvic acid (tHBPA) in the naphthalene catabolic pathway of Pseudomonas putida. The dimeric protein binds one molecule of GSH very tightly (Kd approximately 5 nM) and a second molecule of GSH with much lower affinity (Kd approximately 2 to 11 microM). The enzyme is unstable in the absence of GSH. The turnover number in the forward direction (47 s(-1) at 25 degrees C) greatly exceeds off rates for GSH (koff approximately 10(-3) to 10(-2) s(-1) at 10 degrees C), suggesting that GSH acts as a tightly bound cofactor in the reaction. The crystal structure of the enzyme at 1.7 A resolution reveals that the isomerase is closely related to class kappa GSH transferases. Diffraction quality crystals could only be obtained in the presence of GSH and HCCA/tHBPA. Clear electron density is seen for GSH. Electron density for the organic substrates is located near the GSH and is best modeled to include both HCCA and tHBPA at occupancies of 0.5 for each. Although there is no electron density connecting the sulfur of GSH to the organic substrates, the sulfur is located very close (2.78 A) to C7 of HCCA. Taken together, the results suggest that the isomerization reaction involves a short-lived covalent adduct between the sulfur of GSH and C7 of the substrate.

Legend

Protein

Chemical

Disease

Primary Citation of related structures