2GVE image
Entry Detail
PDB ID:
2GVE
Keywords:
Title:
Time-of-Flight Neutron Diffraction Structure of D-Xylose Isomerase
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2006-05-02
Release Date:
2006-05-16
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.31
R-Value Work:
0.26
R-Value Observed:
0.27
Space Group:
I 2 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Xylose isomerase
Chain IDs:A
Chain Length:388
Number of Molecules:1
Biological Source:Streptomyces rubiginosus
Primary Citation
Locating active-site hydrogen atoms in D-xylose isomerase: Time-of-flight neutron diffraction.
Proc.Natl.Acad.Sci.Usa 103 8342 8347 (2006)
PMID: 16707576 DOI: 10.1073/pnas.0602598103

Abstact

Time-of-flight neutron diffraction has been used to locate hydrogen atoms that define the ionization states of amino acids in crystals of D-xylose isomerase. This enzyme, from Streptomyces rubiginosus, is one of the largest enzymes studied to date at high resolution (1.8 A) by this method. We have determined the position and orientation of a metal ion-bound water molecule that is located in the active site of the enzyme; this water has been thought to be involved in the isomerization step in which D-xylose is converted to D-xylulose or D-glucose to D-fructose. It is shown to be water (rather than a hydroxyl group) under the conditions of measurement (pH 8.0). Our analyses also reveal that one lysine probably has an -NH(2)-terminal group (rather than NH(3)(+)). The ionization state of each histidine residue also was determined. High-resolution x-ray studies (at 0.94 A) indicate disorder in some side chains when a truncated substrate is bound and suggest how some side chains might move during catalysis. This combination of time-of-flight neutron diffraction and x-ray diffraction can contribute greatly to the elucidation of enzyme mechanisms.

Legend

Protein

Chemical

Disease

Primary Citation of related structures