2GD0 image
Entry Detail
PDB ID:
2GD0
Keywords:
Title:
The 1,1-proton transfer reaction mechanism by alpha-methylacyl-CoA racemase is catalyzed by an aspartate/histidine pair and involves a smooth, methionine-rich surface for binding the fatty acyl moiety
Biological Source:
Host Organism:
PDB Version:
Deposition Date:
2006-03-15
Release Date:
2007-02-20
Method Details:
Experimental Method:
Resolution:
1.70 Å
R-Value Free:
0.27
R-Value Work:
0.23
R-Value Observed:
0.23
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:probable alpha-methylacyl-CoA racemase MCR
Chain IDs:A, B, C, D
Chain Length:360
Number of Molecules:4
Biological Source:Mycobacterium tuberculosis
Primary Citation
The Catalysis of the 1,1-Proton Transfer by alpha-Methyl-acyl-CoA Racemase Is Coupled to a Movement of the Fatty Acyl Moiety Over a Hydrophobic, Methionine-rich Surface
J.Mol.Biol. 367 1145 1161 (2007)
PMID: 17320106 DOI: 10.1016/j.jmb.2007.01.062

Abstact

Alpha-methylacyl-CoA racemases are essential enzymes for branched-chain fatty acid metabolism. Their reaction mechanism and the structural basis of their wide substrate specificity are poorly understood. High-resolution crystal structures of Mycobacterium tuberculosis alpha-methylacyl-CoA racemase (MCR) complexed with substrate molecules show the active site geometry required for catalysis of the interconversion of (2S) and (2R)-methylacyl-CoA. The thioester oxygen atom and the 2-methyl group are in a cis-conformation with respect to each other. The thioester oxygen atom fits into an oxyanion hole and the 2-methyl group points into a hydrophobic pocket. The active site geometry agrees with a 1,1-proton transfer mechanism in which the acid/base-pair residues are His126 and Asp156. The structures of the complexes indicate that the acyl chains of the S-substrate and the R-substrate bind in an S-pocket and an R-pocket, respectively. A unique feature of MCR is a large number of methionine residues in the acyl binding region, located between the S-pocket and the R-pocket. It appears that the (S) to (R) interconversion of the 2-methylacyl chiral center is coupled to a movement of the acyl group over this hydrophobic, methionine-rich surface, when moving from its S-pocket to its R-pocket, whereas the 2-methyl moiety and the CoA group remain fixed in their respective pockets.

Legend

Protein

Chemical

Disease

Primary Citation of related structures