2G3K image
Entry Detail
PDB ID:
2G3K
Title:
Crystal structure of the C-terminal domain of Vps28
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2006-02-20
Release Date:
2006-06-27
Method Details:
Experimental Method:
Resolution:
3.05 Å
R-Value Free:
0.27
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 61 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Vacuolar protein sorting-associated protein VPS28
Chain IDs:A, B, C, D, E, F, G
Chain Length:94
Number of Molecules:7
Biological Source:Saccharomyces cerevisiae
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET SELENOMETHIONINE
Primary Citation
The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment.
Traffic 7 1007 1016 (2006)
PMID: 16749904 DOI: 10.1111/j.1600-0854.2006.00440.x

Abstact

The endosomal sorting complex I required for transport (ESCRT-I) is composed of the three subunits Vps23/Tsg101, Vps28 and Vps37. ESCRT-I is recruited to cellular membranes during multivesicular endosome biogenesis and by enveloped viruses such as HIV-1 to mediate budding from the cell. Here, we describe the crystal structure of a conserved C-terminal domain from Sacharomyces cerevisiae Vps28 (Vps28-CTD) at 3.05 A resolution which folds independently into a four-helical bundle structure. Co-expression experiments of Vps28-CTD, Vps23 and Vps37 suggest that Vps28-CTD does not directly participate in ESCRT-I assembly and may thus act as an adaptor module for downstream interaction partners. We show through mutagenesis studies that Vps28-CTD employs its strictly conserved surface in the interaction with the ESCRT-III factor Vps20. Furthermore, we present evidence that Vps28-CTD is sufficient to rescue an equine infectious anaemia virus (EIAV) Gag late domain deletion. Vps28-CTD mutations abolishing Vps20 interaction in vitro also prevent the rescue of the EIAV Gag late domain mutant consistent with a potential direct Vps28-ESCRT-III Vps20 recruitment. Therefore, the physiological relevant EIAV Gag-Alix interaction can be functionally replaced by a Gag-Vps28-CTD fusion. Because both Alix and Vps28-CTD can directly recruit ESCRT-III proteins, ESCRT-III assembly coupled to Vps4 action may therefore constitute the minimal budding machinery for EIAV release.

Legend

Protein

Chemical

Disease

Primary Citation of related structures