2FMK image
Deposition Date 2006-01-09
Release Date 2006-05-23
Last Version Date 2024-10-30
Entry Detail
PDB ID:
2FMK
Title:
Crystal structure of Mg2+ and BeF3- bound CheY in complex with CheZ 200-214 solved from a P2(1)2(1)2 crystal grown in MES (pH 6.0)
Biological Source:
Source Organism:
Salmonella typhimurium (Taxon ID: 99287)
(Taxon ID: )
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.23
R-Value Work:
0.18
R-Value Observed:
0.19
Space Group:
P 21 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Chemotaxis protein cheY
Gene (Uniprot):cheY
Chain IDs:A
Chain Length:129
Number of Molecules:1
Biological Source:Salmonella typhimurium
Polymer Type:polypeptide(L)
Molecule:C-terminal 15-mer from Chemotaxis protein cheZ
Chain IDs:B
Chain Length:16
Number of Molecules:1
Biological Source:
Primary Citation
Crystal Structures of Beryllium Fluoride-free and Beryllium Fluoride-bound CheY in Complex with the Conserved C-terminal Peptide of CheZ Reveal Dual Binding Modes Specific to CheY Conformation
J.Mol.Biol. 359 624 645 (2006)
PMID: 16674976 DOI: 10.1016/j.jmb.2006.03.050

Abstact

Chemotaxis, the environment-specific swimming behavior of a bacterial cell is controlled by flagellar rotation. The steady-state level of the phosphorylated or activated form of the response regulator CheY dictates the direction of flagellar rotation. CheY phosphorylation is regulated by a fine equilibrium of three phosphotransfer activities: phosphorylation by the kinase CheA, its auto-dephosphorylation and dephosphorylation by its phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two spatially distinct protein-protein contacts: tethering of the two proteins to each other and formation of an active site for dephosphorylation. The former involves interaction of phosphorylated CheY with the small highly conserved C-terminal helix of CheZ (CheZ(C)), an indispensable structural component of the functional CheZ protein. To understand how the CheZ(C) helix, representing less than 10% of the full-length protein, ascertains molecular specificity of binding to CheY, we have determined crystal structures of CheY in complex with a synthetic peptide corresponding to 15 C-terminal residues of CheZ (CheZ(200-214)) at resolutions ranging from 2.0 A to 2.3A. These structures provide a detailed view of the CheZ(C) peptide interaction both in the presence and absence of the phosphoryl analog, BeF3-. Our studies reveal that two different modes of binding the CheZ(200-214) peptide are dictated by the conformational state of CheY in the complex. Our structures suggest that the CheZ(C) helix binds to a "meta-active" conformation of inactive CheY and it does so in an orientation that is distinct from the one in which it binds activated CheY. Our dual binding mode hypothesis provides implications for reverse information flow in CheY and extends previous observations on inherent resilience in CheY-like signaling domains.

Legend

Protein

Chemical

Disease

Primary Citation of related structures