2FMG image
Deposition Date 2006-01-09
Release Date 2006-05-23
Last Version Date 2024-02-14
Entry Detail
PDB ID:
2FMG
Keywords:
Title:
Carbonic anhydrase activators. Activation of isoforms I, II, IV, VA, VII and XIV with L- and D- phenylalanine and crystallographic analysis of their adducts with isozyme II: sterospecific recognition within the active site of an enzyme and its consequences for the drug design, structure with L-phenylalanine
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Method Details:
Experimental Method:
Resolution:
1.60 Å
R-Value Free:
0.24
R-Value Work:
0.22
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Carbonic anhydrase 2
Gene (Uniprot):CA2
Chain IDs:A
Chain Length:260
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Carbonic Anhydrase Activators. Activation of Isoforms I, II, IV, VA, VII, and XIV with l- and d-Phenylalanine and Crystallographic Analysis of Their Adducts with Isozyme II: Stereospecific Recognition within the Active Site of an Enzyme and Its Consequences for the Drug Design.
J.Med.Chem. 49 3019 3027 (2006)
PMID: 16686544 DOI: 10.1021/jm0603320

Abstact

Activation of six human brain carbonic anhydrases (hCAs, EC 4.2.1.1), hCA I, II, IV, VA, VII, and XIV, with l-/d-phenylalanine was investigated kinetically and by X-ray crystallography. l-Phe was a potent activator of isozymes I, II, and XIV (K(A)s of 13-240 nM), a weaker activator of hCA VA and VII (K(A)s of 9.8-10.9 microM), and a quite inefficient hCA IV activator (K(A) of 52 microM). d-Phe showed good hCA II activatory properties (K(A) of 35 nM), being a moderate hCA VA, VII, and XIV (K(A)s of 4.6-9.7 microM) and a weak hCA I and IV activator (K(A)s of 63-86 microM). X-ray crystallography of the hCA II-l-Phe/d-Phe adducts showed the activators to be anchored at the entrance of the active site, participating in numerous bonds and hydrophobic interactions with amino acid residues His64, Thr200, Trp5, and Pro201. This is the first study showing different binding modes of stereoisomeric activators within the hCA II active site, with consequences for overall proton transfer processes (rate-determining for the catalytic cycle). It also points out differences of activation efficiency between various isozymes with structurally related activators, exploitable for designing alternative proton transfer pathways. CA activators may lead to the design of pharmacologically useful derivatives for the enhancement of synaptic efficacy, which may represent a conceptually new approach for the treatment of Alzheimer's disease, aging, and other conditions in which spatial learning and memory therapy must be enhanced. As the blood and brain concentrations of l-Phe are quite variable (30-73 microM), activity of some brain CAs may strongly be influenced by the level of activator(s) present in such tissues.

Legend

Protein

Chemical

Disease

Primary Citation of related structures