2F8H image
Deposition Date 2005-12-02
Release Date 2006-09-26
Last Version Date 2023-08-30
Entry Detail
PDB ID:
2F8H
Keywords:
Title:
Structure of acetylcitrulline deacetylase from Xanthomonas campestris in metal-free form
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
1.75 Å
R-Value Free:
0.25
R-Value Work:
0.22
R-Value Observed:
0.22
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:aectylcitrulline deacetylase
Chain IDs:A
Chain Length:369
Number of Molecules:1
Biological Source:Xanthomonas campestris
Primary Citation
Structure of a novel N-acetyl-L-citrulline deacetylase from Xanthomonas campestris
Biophys.Chem. 126 86 93 (2007)
PMID: 16750290 DOI: 10.1016/j.bpc.2006.05.013

Abstact

The structure of a novel acetylcitrulline deacetylase from the plant pathogen Xanthomonas campestris has been solved by multiple-wavelength anomalous dispersion (MAD) using crystals grown from selenomethionine-substituted protein and refined at 1.75 A resolution. The asymmetric unit of the crystal contains one monomer consisting of two domains, a catalytic domain and a dimerization domain. The catalytic domain is able to bind a single Co(II) ion at the active site with no change in conformation. The dimerization domain forms an interface between two monomers related by a crystallographic two-fold symmetry axis. The interface is maintained by hydrophobic interactions between helices and hydrogen bonding between two beta strands that form a continuous beta sheet across the dimer interface. Because the dimers are also related by two-fold crystallographic axes, they pack together across the crystal via the dimerization domain, suggesting that higher order oligomers may form in solution. The polypeptide fold of the monomer is similar to the fold of Pseudomonas sp. carboxypeptidase G2 and Neisseria meningitidis succinyl diaminopimelate desuccinylase. Structural comparison among these enzymes allowed modeling of substrate binding and suggests a possible catalytic mechanism, in which Glu130 functions as a bifunctional general acid-base catalyst and the metal ion polarizes the carbonyl of the acetyl group.

Legend

Protein

Chemical

Disease

Primary Citation of related structures