2F2K image
Entry Detail
PDB ID:
2F2K
Keywords:
Title:
Aldose reductase tertiary complex with NADPH and DEG
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2005-11-17
Release Date:
2006-05-16
Method Details:
Experimental Method:
Resolution:
1.94 Å
R-Value Free:
0.25
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Aldose reductase
Chain IDs:A
Chain Length:316
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Structure of a glutathione conjugate bound to the active site of aldose reductase.
Proteins 64 101 110 (2006)
PMID: 16639747 DOI: 10.1002/prot.20988

Abstact

Aldose reductase (AR) is a monomeric NADPH-dependent oxidoreductase that catalyzes the reduction of aldehydes, ketones, and aldo-sugars. AR has been linked to the development of hyperglycemic injury and is a clinical target for the treatment of secondary diabetic complications. In addition to reducing glucose, AR is key regulator of cell signaling through it's reduction of aldehydes derived from lipoproteins and membrane phospholipids. AR catalyzes the reduction of glutathione conjugates of unsaturated aldehydes with higher catalytic efficiency than free aldehydes. The X-ray structure of human AR holoenzyme in complex with the glutathione analogue S-(1,2-dicarboxyethyl) glutathione (DCEG) was determined at a resolution of 1.94 A. The distal carboxylate group of DCEG's dicarboxyethyl moiety interacted with the conserved AR anion binding site residues Tyr48, His110, and Trp111. The bound DCEG's glutathione backbone adopted the low-energy Y-shape form. The C-terminal carboxylate of DCEG glutathione's glycine formed hydrogen bonds to Leu301 and Ser302, while the remaining interactions between DCEG and AR were hydrophobic, permitting significant flexibility of the AR and glutathione (GS) analogue interaction. The observed conformation and interactions of DCEG with AR were consistent with our previously published molecular dynamics model of glutathionyl-propanal binding to AR. The current structure identifies major interactions of glutathione conjugates with the AR active-site residues.

Legend

Protein

Chemical

Disease

Primary Citation of related structures