2DYS image
Deposition Date 2006-09-16
Release Date 2007-04-03
Last Version Date 2023-10-25
Entry Detail
PDB ID:
2DYS
Keywords:
Title:
Bovine heart cytochrome C oxidase modified by DCCD
Biological Source:
Source Organism:
Bos taurus (Taxon ID: 9913)
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.24
R-Value Work:
0.19
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 1
Gene (Uniprot):MT-CO1
Chain IDs:A, N
Chain Length:514
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 2
Gene (Uniprot):MT-CO2
Chain IDs:B, O
Chain Length:227
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 3
Gene (Uniprot):MT-CO3
Chain IDs:C, P
Chain Length:261
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 4 isoform 1
Gene (Uniprot):COX4I1
Chain IDs:D, Q
Chain Length:147
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase polypeptide Va
Gene (Uniprot):COX5A
Chain IDs:E, R
Chain Length:109
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase polypeptide Vb
Gene (Uniprot):COX5B
Chain IDs:F, S
Chain Length:98
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase polypeptide VIa-heart
Gene (Uniprot):COX6A2
Chain IDs:G, T
Chain Length:85
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit VIb isoform 1
Gene (Uniprot):COX6B1
Chain IDs:H, U
Chain Length:85
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase polypeptide VIc
Gene (Uniprot):COX6C
Chain IDs:I, V
Chain Length:73
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase polypeptide VIIa-heart
Gene (Uniprot):COX7A1
Chain IDs:J, W
Chain Length:59
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase polypeptide VIIb
Gene (Uniprot):COX7B
Chain IDs:K, X
Chain Length:56
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase polypeptide VIIc
Gene (Uniprot):COX7C
Chain IDs:L, Y
Chain Length:47
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase polypeptide VIII-heart
Gene (Uniprot):COX8B
Chain IDs:M, Z
Chain Length:46
Number of Molecules:2
Biological Source:Bos taurus
Primary Citation
Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase
Embo J. 26 1713 1725 (2007)
PMID: 17332748 DOI: 10.1038/sj.emboj.7601618

Abstact

All 13 lipids, including two cardiolipins, one phosphatidylcholine, three phosphatidylethanolamines, four phosphatidylglycerols and three triglycerides, were identified in a crystalline bovine heart cytochrome c oxidase (CcO) preparation. The chain lengths and unsaturated bond positions of the fatty acid moieties determined by mass spectrometry suggest that each lipid head group identifies its specific binding site within CcOs. The X-ray structure demonstrates that the flexibility of the fatty acid tails facilitates their effective space-filling functions and that the four phospholipids stabilize the CcO dimer. Binding of dicyclohexylcarbodiimide to the O(2) transfer pathway of CcO causes two palmitate tails of phosphatidylglycerols to block the pathway, suggesting that the palmitates control the O(2) transfer process.The phosphatidylglycerol with vaccenate (cis-Delta(11)-octadecenoate) was found in CcOs of bovine and Paracoccus denitrificans, the ancestor of mitochondrion, indicating that the vaccenate is conserved in bovine CcO in spite of the abundance of oleate (cis-Delta(9)-octadecenoate). The X-ray structure indicates that the protein moiety selects cis-vaccenate near the O(2) transfer pathway against trans-vaccenate. These results suggest that vaccenate plays a critical role in the O(2) transfer mechanism.

Legend

Protein

Chemical

Disease

Primary Citation of related structures