2D36 image
Deposition Date 2005-09-26
Release Date 2006-05-30
Last Version Date 2024-03-13
Entry Detail
PDB ID:
2D36
Keywords:
Title:
The Crystal Structure of Flavin Reductase HpaC
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.30 Å
R-Value Free:
0.24
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 31 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:hypothetical NADH-dependent FMN oxidoreductase
Chain IDs:A
Chain Length:176
Number of Molecules:1
Biological Source:Sulfolobus tokodaii
Ligand Molecules
Primary Citation
Crystal structures of the short-chain flavin reductase HpaC from Sulfolobus tokodaii strain 7 in its three states: NAD(P)(+)(-)free, NAD(+)(-)bound, and NADP(+)(-)bound
Biochemistry 45 5103 5110 (2006)
PMID: 16618099 DOI: 10.1021/bi052313i

Abstact

4-Hydroxyphenylacetate (4-HPA) is oxidized as an energy source by two component enzymes, the large component (HpaB) and the small component (HpaC). HpaB is a 4-HPA monooxygenase that utilizes FADH(2) supplied by a flavin reductase HpaC. We determined the crystal structure of HpaC (ST0723) from the aerobic thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7 in its three states [NAD(P)(+)-free, NAD(+)-bound, and NADP(+)-bound]. HpaC exists as a homodimer, and each monomer was found to contain an FMN. HpaC preferred FMN to FAD because there was not enough space to accommodate the AMP moiety of FAD in its flavin-binding site. The most striking difference between the NAD(P)(+)-free and the NAD(+)/NADP(+)-bound structures was observed in the N-terminal helix. The N-terminal helices in the NAD(+)/NADP(+)-bound structures rotated ca. 20 degrees relative to the NAD(P)(+)-free structure. The bound NAD(+) has a compact folded conformation with nearly parallel stacking rings of nicotinamide and adenine. The nicotinamide of NAD(+) stacked the isoalloxazine ring of FMN so that NADH could directly transfer hydride. The bound NADP(+) also had a compact conformation but was bound in a reverse direction, which was not suitable for hydride transfer.

Legend

Protein

Chemical

Disease

Primary Citation of related structures