2D1Y image
Deposition Date 2005-09-02
Release Date 2006-03-02
Last Version Date 2023-10-25
Entry Detail
PDB ID:
2D1Y
Keywords:
Title:
Crystal structure of TT0321 from Thermus thermophilus HB8
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
1.65 Å
R-Value Free:
0.19
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:hypothetical protein TT0321
Gene (Uniprot):TTHA0369
Chain IDs:A, B, C, D
Chain Length:256
Number of Molecules:4
Biological Source:Thermus thermophilus
Ligand Molecules
Primary Citation
Biochemical and structural characterization of a short-chain dehydrogenase/reductase of Thermus thermophilus HB8: a hyperthermostable aldose-1-dehydrogenase with broad substrate specificity.
Chem.Biol.Interact. 178 117 126 (2009)
PMID: 18926808 DOI: 10.1016/j.cbi.2008.09.018

Abstact

Thermus thermophilus HB8 is a hyperthermophilic bacterium, thriving at environmental temperature near 80 degrees C. The genomic analysis of this bacterium predicted 18 genes for proteins belonging to the short-chain dehydrogenase/reductases (SDR) superfamily, but their functions remain unknown. A SDR encoded in a gene (TTHA0369) was chosen for functional and structural characterization. Enzymatic assays revealed that the recombinant tetrameric protein has a catalytic activity as NAD(+)-dependent aldose 1-dehydroganse, which accepts various aldoses such as d-fucose, d-galactose, d-glucose, l-arabinose, cellobiose and lactose. The enzyme also oxidized non-sugar alicyclic alcohols, and was competitively inhibited by hexestrol, 1,10-phenanthroline, 2,3-benzofuran and indole. The enzyme was stable at pH 2-13 and up to 85 degrees C. We have determined the crystal structure of the enzyme-NAD(+) binary complex at 1.65A resolution. The structure provided evidence for the strict coenzyme specificity and broad substrate specificity of the enzyme. Additionally, it has unusual features, aromatic-aromatic interactions among Phe141 and Phe249 in the subunit interface and hydrogen networks around the C-terminal Asp-Gly-Gly sequence at positions 242-244. Stability analysis of the mutant D242N, F141A and F249A enzymes indicated that the two unique structural features contribute to the hyperthermostability of the enzyme. This study demonstrates that aldose 1-dehydrogenase is a member of the SDR superfamily, and provides a novel structural basis of thermostability.

Legend

Protein

Chemical

Disease

Primary Citation of related structures