2CG3 image
Entry Detail
PDB ID:
2CG3
Keywords:
Title:
Crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa.
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2006-02-27
Release Date:
2006-04-26
Method Details:
Experimental Method:
Resolution:
2.60 Å
R-Value Free:
0.24
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 65 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:SDSA1
Chain IDs:A
Chain Length:658
Number of Molecules:1
Biological Source:PSEUDOMONAS AERUGINOSA
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET SELENOMETHIONINE
Ligand Molecules
Primary Citation
The Crystal Structure of Sdsa1, an Alkylsulfatase from Pseudomonas Aeruginosa, Defines a Third Third Class of Sulfatases
Proc.Natl.Acad.Sci.USA 103 7631 ? (2006)
PMID: 16684886 DOI: 10.1073/PNAS.0510501103

Abstact

Pseudomonas aeruginosa is both a ubiquitous environmental bacterium and an opportunistic human pathogen. A remarkable metabolic versatility allows it to occupy a multitude of ecological niches, including wastewater treatment plants and such hostile environments as the human respiratory tract. P. aeruginosa is able to degrade and metabolize biocidic SDS, the detergent of most commercial personal hygiene products. We identify SdsA1 of P. aeruginosa as a secreted SDS hydrolase that allows the bacterium to use primary sulfates such as SDS as a sole carbon or sulfur source. Homologues of SdsA1 are found in many pathogenic and some nonpathogenic bacteria. The crystal structure of SdsA1 reveals three distinct domains. The N-terminal catalytic domain with a binuclear Zn2+ cluster is a distinct member of the metallo-beta-lactamase fold family, the central dimerization domain ensures resistance to high concentrations of SDS, whereas the C-terminal domain provides a hydrophobic groove, presumably to recruit long aliphatic substrates. Crystal structures of apo-SdsA1 and complexes with substrate analog and products indicate an enzymatic mechanism involving a water molecule indirectly activated by the Zn2+ cluster. The enzyme SdsA1 thus represents a previously undescribed class of sulfatases that allows P. aeruginosa to survive and thrive under otherwise bacteriocidal conditions.

Legend

Protein

Chemical

Disease

Primary Citation of related structures