2BMA image
Deposition Date 2005-03-10
Release Date 2005-05-19
Last Version Date 2023-12-13
Entry Detail
PDB ID:
2BMA
Keywords:
Title:
The crystal structure of Plasmodium falciparum glutamate dehydrogenase, a putative target for novel antimalarial drugs
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.70 Å
R-Value Free:
0.27
R-Value Work:
0.24
R-Value Observed:
0.24
Space Group:
C 1 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:GLUTAMATE DEHYDROGENASE (NADP+)
Gene (Uniprot):GluDH
Chain IDs:A, B, C, D, E, F
Chain Length:470
Number of Molecules:6
Biological Source:PLASMODIUM FALCIPARUM
Ligand Molecules
Primary Citation
The Crystal Structure of Plasmodium Falciparum Glutamate Dehydrogenase, a Putative Target for Novel Antimalarial Drugs
J.Mol.Biol. 349 597 ? (2005)
PMID: 15878595 DOI: 10.1016/J.JMB.2005.03.077

Abstact

Plasmodium falciparum is the main causative agent of tropical malaria, the most severe parasitic disease in the world. Growing resistance of Plasmodia towards available drugs is an increasing problem in countries where malaria is endemic. As Plasmodia are sensitive to oxidative stress, augmenting this in the parasite represents a promising principle for the development of novel antimalarial drugs. The NADP-dependent glutamate dehydrogenase (GDH) of P.falciparum is largely responsible for the production of NADPH in the parasite, which in turn serves as electron source for the antioxidative enzymes glutathione reductase and thioredoxin reductase. As GDH does not occur in the host erythrocyte, GDH is a particularly attractive target for drug therapy. The three-dimensional structure of P.falciparum GDH in the unligated state has been determined by X-ray crystallography to a resolution of 2.7A. Compared to the mammalian enzymes, two amino acid residues are exchanged in the putative active site of the parasite GDH. The most obvious differences between parasite and human GDH are the subunit interfaces of the hexameric proteins. In the parasite protein, several salt-bridges mediate contacts between the subunits whereas in the human enzyme these interactions are mainly of hydrophobic nature. Furthermore, P.falciparum GDH possesses a unique N-terminal extension that does not occur in any other GDH sequence so far studied. These findings might be exploited for the design of peptidomimetics capable of disrupting the oligomeric organisation of the parasite enzyme.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback