2BER image
Deposition Date 2004-11-30
Release Date 2005-04-04
Last Version Date 2024-11-06
Entry Detail
PDB ID:
2BER
Keywords:
Title:
Y370G Active Site Mutant of the Sialidase from Micromonospora viridifaciens in complex with beta-Neu5Ac (sialic acid).
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.80 Å
R-Value Free:
0.19
R-Value Work:
0.14
R-Value Observed:
0.14
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:BACTERIAL SIALIDASE
Gene (Uniprot):nedA
Mutations:YES
Chain IDs:A
Chain Length:601
Number of Molecules:1
Biological Source:MICROMONOSPORA VIRIDIFACIENS
Primary Citation
Structure and Mechanism of Action of an Inverting Mutant Sialidase.
Biochemistry 44 9117 ? (2005)
PMID: 15966735 DOI: 10.1021/BI050517T

Abstact

Mutagenesis of the conserved tyrosine (Y370) of the Micromonospora viridifaciens sialidase to small amino acids changes the mechanism of catalysis from retention of anomeric configuration to inversion [Watson, J. N., et al. (2003) Biochemistry 42, 12682-12690]. For the Y370G mutant enzyme-catalyzed hydrolysis of a series of aryl sialosides and 3'-sialyllactose, the derived Brønsted parameters (beta(lg)) on k(cat) and k(cat)/K(m) are -0.63 +/- 0.05 and -0.80 +/- 0.08, respectively. Thus, for the Y370G enzyme, glycosidic C-O bond cleavage is rate-determining. Analysis of the activity of the Y370G mutant and wild-type enzymes against a substrate [3,4-dihydro-2H-pyrano[3,2-c]pyridinium alpha-d-N-acetylneuraminide (DHP-alphaNeu5Ac)] whose hydrolysis cannot be accelerated by acid catalysis is consistent with these reactions proceeding via S(N)1 and S(N)2 mechanisms, respectively. The overall structure of the Y370G mutant sialidase active site is very similar to the previously reported wild-type structure [Gaskell, A., et al. (1995) Structure 3, 1197-1205], although removal of the tyrosine residue creates two significant changes to the active site. First, the anomeric oxygen atom of the hydrolysis product (beta-N-acetylneuraminic acid) and four water molecules bind in the large cavity created by the Y370G mutation. Second, the side chain of Asn310 moves to make a strong hydrogen bond to one of the bound water molecules.

Legend

Protein

Chemical

Disease

Primary Citation of related structures