2AVX image
Deposition Date 2005-08-30
Release Date 2006-06-20
Last Version Date 2024-05-22
Entry Detail
PDB ID:
2AVX
Keywords:
Title:
solution structure of E coli SdiA1-171
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Conformers Calculated:
100
Conformers Submitted:
20
Selection Criteria:
structures with the lowest energy
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Regulatory protein sdiA
Gene (Uniprot):sdiA
Mutations:Q2S, N127E
Chain IDs:A
Chain Length:171
Number of Molecules:1
Biological Source:Escherichia coli
Ligand Molecules
Primary Citation
Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones.
J.Mol.Biol. 355 262 273 (2006)
PMID: 16307757 DOI: 10.1016/j.jmb.2005.10.041

Abstact

The three-dimensional structure of a complex between the N-terminal domain of the quorum sensing protein SdiA of Escherichia coli and a candidate autoinducer N-octanoyl-L-homoserine lactone (C8-HSL) has been calculated in solution from NMR data. The SdiA-HSL system shows the "folding switch" behavior that has been seen for quorum-sensing factors produced by other bacterial species. In the presence of C8-HSL, a significant proportion of the SdiA protein is produced in a folded, soluble form in an E.coli expression system, whereas in the absence of acyl homoserine lactones, the protein is expressed into insoluble inclusion bodies. In the three-dimensional structure, the autoinducer molecule is sequestered in a deep pocket in the hydrophobic core, forming an integral part of the core packing of the folded SdiA. The NMR spectra of the complex show that the bound C8-HSL is conformationally heterogeneous, either due to motion within the pocket or to heterogeneity of the bound structure. The C8-HSL conformation is defined by NOEs to the protein only at the terminal methyl group of the octanoyl chain. Unlike other well-studied bacterial quorum sensing systems such as LuxR of Vibrio fischeri and TraR of Agrobacterium tumefaciens, there is no endogenous autoinducer for SdiA in E.coli: the E.coli genome does not contain a gene analogous to the LuxI and TraI autoinducer synthetases. We show that two other homoserine lactone derivatives are also capable of acting as a folding-switch autoinducers for SdiA. The observed structural heterogeneity of the bound C8-HSL in the complex, together with the variety of autoinducer-type molecules that can apparently act as folding switches in this system, are consistent with the postulated biological function of the SdiA protein as a detector of the presence of other species of bacteria.

Legend

Protein

Chemical

Disease

Primary Citation of related structures