1xyl image
Entry Detail
PDB ID:
1XYL
Title:
THE ROLE OF THE DIVALENT METAL ION IN SUGAR BINDING, RING OPENING, AND ISOMERIZATION BY D-XYLOSE ISOMERASE: REPLACEMENT OF A CATALYTIC METAL BY AN AMINO-ACID
Biological Source:
PDB Version:
Deposition Date:
1993-12-07
Release Date:
1994-05-31
Method Details:
Experimental Method:
Resolution:
1.80 Å
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 21 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:XYLOSE ISOMERASE
Chain IDs:A, B
Chain Length:386
Number of Molecules:2
Biological Source:Streptomyces olivochromogenes
Primary Citation
Role of the divalent metal ion in sugar binding, ring opening, and isomerization by D-xylose isomerase: replacement of a catalytic metal by an amino acid.
Biochemistry 33 1488 1494 (1994)
PMID: 7906142 DOI: 10.1021/bi00172a027

Abstact

The distinct roles of the two magnesium ions essential to the activity of D-xylose isomerase from Streptomyces olivochromogenes were examined. The enzyme-magnesium complex was isolated, and the stoichiometry of cation binding determined by neutron activation analysis to be 2 mol of magnesium per mole of enzyme. A plot of Mg2+ added versus Mg2+ bound to enzyme is consistent with apparent KD values of < or = 0.5-1.0 mM for one Mg2+ and < or = 2-5 mM for the second. A site-directed mutant of D-xylose isomerase was designed to remove the tighter, tetracoordinated magnesium binding site (site 1, Mg-1); Glu180 was replaced with Lys180. The stoichiometry of metal binding to this mutant, E180K, is 1 mol of magnesium per mole of enzyme. Ring-opening assays with 1-thioglucose (H2S released upon ring opening) show E180K catalyzes the opening of the sugar ring at 20% the rate of the wild-type, but E180K does not catalyze isomerization of glucose to fructose. Thus, the magnesium bound to Glu180 is essential for isomerization but not essential for ring opening. The X-ray crystallographic structures of E180K in the absence of magnesium and in the presence and absence of 250 mM glucose were obtained to 1.8-A resolution and refined to R factors of 17.7% and 19.7%, respectively. The wild-type and both E180K structures show no significant structural differences, except the epsilon-amino group of Lys180, which occupies the position usually occupied by the Mg-1.(ABSTRACT TRUNCATED AT 250 WORDS)

Legend

Protein

Chemical

Disease

Primary Citation of related structures