1g79 image
Deposition Date 2000-11-09
Release Date 2000-11-29
Last Version Date 2023-08-09
Entry Detail
PDB ID:
1G79
Keywords:
Title:
X-RAY STRUCTURE OF ESCHERICHIA COLI PYRIDOXINE 5'-PHOSPHATE OXIDASE COMPLEXED WITH PYRIDOXAL 5'-PHOSPHATE AT 2.0 A RESOLUTION
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.22
R-Value Work:
0.20
R-Value Observed:
0.21
Space Group:
P 31 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:PYRIDOXINE 5'-PHOSPHATE OXIDASE
Chain IDs:A
Chain Length:218
Number of Molecules:1
Biological Source:Escherichia coli
Primary Citation
X-ray structure of Escherichia coli pyridoxine 5'-phosphate oxidase complexed with pyridoxal 5'-phosphate at 2.0 A resolution.
J.Mol.Biol. 310 817 826 (2001)
PMID: 11453690 DOI: 10.1006/jmbi.2001.4734

Abstact

Escherichia coli pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the biosynthesis of pyridoxal 5'-phosphate by the FMN oxidation of pyridoxine 5'-phosphate forming FMNH(2) and H(2)O(2). Recent studies have shown that in addition to the active site, pyridoxine 5'-phosphate oxidase contains a non-catalytic site that binds pyridoxal 5'-phosphate tightly. The crystal structure of pyridoxine 5'-phosphate oxidase from E. coli with one or two molecules of pyridoxal 5'-phosphate bound to each monomer has been determined to 2.0 A resolution. One of the pyridoxal 5'-phosphate molecules is clearly bound at the active site with the aldehyde at C4' of pyridoxal 5'-phosphate near N5 of the bound FMN. A protein conformational change has occurred that partially closes the active site. The orientation of the bound pyridoxal 5'-phosphate suggests that the enzyme catalyzes a hydride ion transfer between C4' of pyridoxal 5'-phosphate and N5 of FMN. When the crystals are soaked with excess pyridoxal 5'-phosphate an additional molecule of this cofactor is also bound about 11 A from the active site. A possible tunnel exists between the two sites so that pyridoxal 5'-phosphate formed at the active site may transfer to the non-catalytic site without passing though the solvent.

Legend

Protein

Chemical

Disease

Primary Citation of related structures