1ZW5 image
Entry Detail
PDB ID:
1ZW5
Keywords:
Title:
X-ray structure of Farnesyl diphosphate synthase protein
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2005-06-03
Release Date:
2005-06-28
Method Details:
Experimental Method:
Resolution:
2.30 Å
R-Value Free:
0.22
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 41 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:farnesyl diphosphate synthase
Chain IDs:A
Chain Length:355
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs.
Proc.Natl.Acad.Sci.USA 103 7829 7834 (2006)
PMID: 16684881 DOI: 10.1073/pnas.0601643103

Abstact

Osteoporosis and low bone mass are currently estimated to be a major public health risk affecting >50% of the female population over the age of 50. Because of their bone-selective pharmacokinetics, nitrogen-containing bisphosphonates (N-BPs), currently used as clinical inhibitors of bone-resorption diseases, target osteoclast farnesyl pyrophosphate synthase (FPPS) and inhibit protein prenylation. FPPS, a key branchpoint of the mevalonate pathway, catalyzes the successive condensation of isopentenyl pyrophosphate with dimethylallyl pyrophosphate and geranyl pyrophosphate. To understand the molecular events involved in inhibition of FPPS by N-BPs, we used protein crystallography, enzyme kinetics, and isothermal titration calorimetry. We report here high-resolution x-ray structures of the human enzyme in complexes with risedronate and zoledronate, two of the leading N-BPs in clinical use. These agents bind to the dimethylallyl/geranyl pyrophosphate ligand pocket and induce a conformational change. The interactions of the N-BP cyclic nitrogen with Thr-201 and Lys-200 suggest that these inhibitors achieve potency by positioning their nitrogen in the proposed carbocation-binding site. Kinetic analyses reveal that inhibition is competitive with geranyl pyrophosphate and is of a slow, tight binding character, indicating that isomerization of an initial enzyme-inhibitor complex occurs with inhibitor binding. Isothermal titration calorimetry indicates that binding of N-BPs to the apoenzyme is entropy-driven, presumably through desolvation entropy effects. These experiments reveal the molecular binding characteristics of an important pharmacological target and provide a route for further optimization of these important drugs.

Legend

Protein

Chemical

Disease

Primary Citation of related structures