1ZUM image
Deposition Date 2005-05-31
Release Date 2005-06-28
Last Version Date 2023-08-23
Entry Detail
PDB ID:
1ZUM
Keywords:
Title:
Human Mitochondrial Aldehyde Dehydrogenase Asian Variant, ALDH2*2, Apo Form
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.10 Å
R-Value Free:
0.23
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Aldehyde dehydrogenase
Gene (Uniprot):ALDH2
Mutations:E487K
Chain IDs:A, B, C, D, E, F, G, H, I, J, K, L
Chain Length:500
Number of Molecules:12
Biological Source:Homo sapiens
Primary Citation
Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase "asian" variant
J.Biol.Chem. 280 30550 30556 (2005)
PMID: 15983043 DOI: 10.1074/jbc.M502345200

Abstact

Mitochondrial aldehyde dehydrogenase (ALDH2) is the major enzyme that oxidizes ethanol-derived acetaldehyde. A nearly inactive form of the enzyme, ALDH2*2, is found in about 40% of the East Asian population. This variant enzyme is defined by a glutamate to lysine substitution at residue 487 located within the oligomerization domain. ALDH2*2 has an increased Km for its coenzyme, NAD+, and a decreased kcat, which lead to low activity in vivo. Here we report the 2.1 A crystal structure of ALDH2*2. The structure shows a large disordered region located at the dimer interface that includes much of the coenzyme binding cleft and a loop of residues that form the base of the active site. As a consequence of these structural changes, the variant enzyme exhibits rigid body rotations of its catalytic and coenzyme-binding domains relative to the oligomerization domain. These structural perturbations are the direct result of the inability of lysine 487 to form important stabilizing hydrogen bonds with arginines 264 and 475. Thus, the elevated Km for coenzyme exhibited by this variant probably reflects the energetic penalty for reestablishing this site for productive coenzyme binding, whereas the structural alterations near the active site are consistent with the lowered Vmax.

Legend

Protein

Chemical

Disease

Primary Citation of related structures