1ZNW image
Deposition Date 2005-05-12
Release Date 2005-11-29
Last Version Date 2024-11-13
Entry Detail
PDB ID:
1ZNW
Keywords:
Title:
Crystal Structure Of Unliganded Form Of Mycobacterium tuberculosis Guanylate Kinase
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.10 Å
R-Value Free:
0.21
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
I 2 3
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Guanylate kinase
Chain IDs:A
Chain Length:207
Number of Molecules:1
Biological Source:Mycobacterium tuberculosis
Primary Citation
Unique GMP-binding site in Mycobacterium tuberculosis guanosine monophosphate kinase
Proteins 62 489 500 (2006)
PMID: 16288457 DOI: 10.1002/prot.20662

Abstact

Bacterial nucleoside monophosphate (NMP) kinases, which convert NMPs to nucleoside diphosphates (NDP), are investigated as potential antibacterial targets against pathogenic bacteria. Herein, we report the biochemical and structural characterization of GMP kinase from Mycobacterium tuberculosis (GMPKMt). GMPKMt is a monomer with an unusual specificity for ATP as a phosphate donor, a lower catalytic efficiency compared with eukaryotic GMPKs, and it carries two redox-sensitive cysteines in the central CORE domain. These properties were analyzed in the light of the high-resolution crystal structures of unbound, GMP-bound, and GDP-bound GMPKMt. The latter structure was obtained in both an oxidized form, in which the cysteines form a disulfide bridge, and a reduced form which is expected to correspond to the physiological enzyme. GMPKMt has a modular domain structure as most NMP kinases. However, it departs from eukaryotic GMPKs by the unusual conformation of its CORE domain, and by its partially open LID and GMP-binding domains which are the same in the apo-, GMP-bound, and GDP-bound forms. GMPKMt also features a unique GMP binding site which is less close-packed than that of mammalian GMPKs, and in which the replacement of a critical tyrosine by a serine removes a catalytic interaction. In contrast, the specificity of GMPKMt for ATP may be a general feature of GMPKs because of an invariant structural motif that recognizes the adenine base. Altogether, differences in domain dynamics and GMP binding between GMPKMt and mammalian GMPKs should reveal clues for the design of GMPKMt-specific inhibitors.

Legend

Protein

Chemical

Disease

Primary Citation of related structures