1ZH4 image
Deposition Date 2005-04-22
Release Date 2005-12-13
Last Version Date 2023-08-23
Entry Detail
PDB ID:
1ZH4
Keywords:
Title:
Crystal Structure Of The Mg+2/BeF3-Bound Receiver Domain Of Kdp Potassium Transport System Response Regulator KdpE
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.26
R-Value Work:
0.22
R-Value Observed:
0.22
Space Group:
C 2 2 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:KDP operon transcriptional regulatory protein kdpE
Gene (Uniprot):kdpE
Mutagens:A121Q
Chain IDs:A, B
Chain Length:121
Number of Molecules:2
Biological Source:Escherichia coli
Primary Citation
A common dimerization interface in bacterial response regulators KdpE and TorR.
Protein Sci. 14 3077 3088 (2005)
PMID: 16322582 DOI: 10.1110/ps.051722805

Abstact

Bacterial response regulators are key regulatory proteins that function as the final elements of so-called two-component signaling systems. The activities of response regulators in vivo are modulated by phosphorylation that results from interactions between the response regulator and its cognate histidine protein kinase. The level of response regulator phosphorylation, which is regulated by intra-or extracellular signals sensed by the histidine protein kinase, ultimately determines the output response that is initiated or carried out by the response regulator. We have recently hypothesized that in the OmpR/PhoB subfamily of response regulator transcription factors, this activation involves a common mechanism of dimerization using a set of highly conserved residues in the alpha4-beta5-alpha5 face. Here we report the X-ray crystal structures of the regulatory domains of response regulators TorR (1.8 A), Ca(2+)-bound KdpE (2.0 A), and Mg(2+)/BeF(3)(-)-bound KdpE (2.2 A), both members of the OmpR/ PhoB subfamily from Escherichia coli. Both regulatory domains form symmetric dimers in the asymmetric unit that involve the alpha4-beta5-alpha5 face. As observed previously in other OmpR/PhoB response regulators, the dimer interfaces are mediated by highly conserved residues within this subfamily. These results provide further evidence that most all response regulators of the OmpR/ PhoB subfamily share a common mechanism of activation by dimerization.

Legend

Protein

Chemical

Disease

Primary Citation of related structures