1Z9W image
Deposition Date 2005-04-05
Release Date 2005-04-19
Last Version Date 2023-08-23
Entry Detail
PDB ID:
1Z9W
Keywords:
Title:
Tetrameric structure of apo-7,8-Dihydroneopterin Aldolase from Mycobacterium tuberculosis
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.50 Å
R-Value Free:
0.23
R-Value Work:
0.17
R-Value Observed:
0.18
Space Group:
I 4
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Dihydroneopterin aldolase
Chain IDs:A
Chain Length:133
Number of Molecules:1
Biological Source:Mycobacterium tuberculosis H37Rv
Primary Citation
Regulation by oligomerization in a mycobacterial folate biosynthetic enzyme.
J.Mol.Biol. 349 61 72 (2005)
PMID: 15876368 DOI: 10.1016/j.jmb.2005.03.023

Abstact

Folate derivatives are essential cofactors in the biosynthesis of purines, pyrimidines and amino acids across all forms of life. Mammals uptake folate from their diets, whereas most bacteria must synthesize folate de novo. Therefore, the enzymes in the folate biosynthetic pathway are attractive drug targets against bacterial pathogens such as Mycobacterium tuberculosis, the cause of the world's most deadly infectious disease, tuberculosis (TB). M.tuberculosis 7,8-dihydroneopterin aldolase (Mtb FolB, DHNA) is the second enzyme in the folate biosynthetic pathway, which catalyzes the conversion of 7,8-dihydroneopterin to 6-hydroxymethyl-7,8-dihydropterin and glycoaldehyde. The 1.6A X-ray crystal structure of Mtb FolB complexed with its product, 6-hydroxymethyl-7,8-dihydropterin, reveals an octameric assembly similar to that seen in crystal structures of other FolB homologs. However, the 2.5A crystal structure of unliganded Mtb FolB reveals a novel tetrameric oligomerization state, with only partially formed active sites. A substrate induced conformational change appears to be necessary to convert the inactive tetramer to the active octamer. Ultracentrifugation confirmed that in solution unliganded Mtb FolB is mainly tetrameric and upon addition of substrate FolB is predominantly octameric. Kinetic analysis of substrate binding gives a Hill coefficient of 2.0, indicating positive cooperativity. We hypothesize that Mtb FolB displays cooperativity in substrate binding to regulate the cellular concentration of 7,8-dihydroneopterin, so that it may function not only as a precursor to folate but also as an antioxidant for the survival of M.tuberculosis against host defenses.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback