1Z5X image
Deposition Date 2005-03-21
Release Date 2005-04-05
Last Version Date 2023-08-23
Entry Detail
PDB ID:
1Z5X
Title:
hemipteran ecdysone receptor ligand-binding domain complexed with ponasterone A
Biological Source:
Source Organism:
Bemisia tabaci (Taxon ID: 7038)
Host Organism:
Method Details:
Experimental Method:
Resolution:
3.07 Å
R-Value Free:
0.27
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 43 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Ecdysone receptor ligand binding domain
Chain IDs:B (auth: E)
Chain Length:310
Number of Molecules:1
Biological Source:Bemisia tabaci
Polymer Type:polypeptide(L)
Molecule:Ultraspiracle protein (USP) a homologue of RXR
Chain IDs:A (auth: U)
Chain Length:262
Number of Molecules:1
Biological Source:Bemisia tabaci
Primary Citation
The X-ray structure of a hemipteran ecdysone receptor ligand-binding domain: comparison with a lepidopteran ecdysone receptor ligand-binding domain and implications for insecticide design.
J.Biol.Chem. 280 22258 22269 (2005)
PMID: 15809296 DOI: 10.1074/jbc.M500661200

Abstact

The ecdysone receptor is a hormone-dependent transcription factor that plays a central role in regulating the expression of vast networks of genes during development and reproduction in the phylum Arthropoda. The functional receptor is a heterodimer of the two nuclear receptor proteins ecdysone receptor (EcR) and ultraspiracle protein. The receptor is the target of the environmentally friendly bisacylhydrazine insecticides, which are effective against Lepidoptera but not against Hemiptera or several other insect orders. Here we present evidence indicating that much of the selectivity of the bisacylhydrazine insecticides can be studied at the level of their binding to purified ecdysone receptor ligand-binding domain (LBD) heterodimers. We report the crystal structure of the ecdysone receptor LBD heterodimer of the hemipteran Bemisia tabaci (Bt, sweet potato whitefly) in complex with the ecdysone analogue ponasterone A. Although comparison with the corresponding known LBD structure from the lepidopteran Heliothis virescens (Hv) ecdysone receptor revealed the overall mode of ponasterone A binding to be very similar in the two cases, we observed that the BtEcR ecdysteroid-binding pocket is structured differently to that of HvEcR in those parts that are not in contact with ponasterone A. We suggest that these differences in the ligand-binding pocket may provide a molecular basis for the taxonomic order selectivity of bisacylhydrazine insecticides.

Legend

Protein

Chemical

Disease

Primary Citation of related structures