Planned Maintenance: Some services may turn out to be unavailable from 15th January, 2026 to 16th January, 2026. We apologize for the inconvenience!

1YHB image
Deposition Date 1994-04-14
Release Date 1994-06-22
Last Version Date 2024-02-14
Entry Detail
PDB ID:
1YHB
Title:
CRYSTAL STRUCTURES OF Y41H AND Y41F MUTANTS OF GENE V PROTEIN FROM FF PHAGE SUGGEST POSSIBLE PROTEIN-PROTEIN INTERACTIONS IN GVP-SSDNA COMPLEX
Biological Source:
Source Organism(s):
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Work:
0.18
Space Group:
C 1 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:GENE V PROTEIN
Gene (Uniprot):V
Chain IDs:A
Chain Length:87
Number of Molecules:1
Biological Source:Enterobacteria phage f1
Primary Citation
Crystal structures of Y41H and Y41F mutants of gene V protein from Ff phage suggest possible protein-protein interactions in the GVP-ssDNA complex.
Biochemistry 33 7768 7778 (1994)
PMID: 8011642 DOI: 10.1021/bi00191a004

Abstact

Gene V protein (GVP) encoded by the filamentous phage Ff (M13, fl, fd) is a homodimeric protein of 87 amino acids that binds to single-stranded DNA (ssDNA) nonspecifically and cooperatively. The structure (monoclinic C2 form) of the wild-type protein has been determined and refined at 1.8-A resolution [Skinner et al. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 2071-2075]. The monomer structure consists of a somewhat distorted five-stranded beta-barrel core with three prominent loops: a DNA-binding loop, a dyad loop, and a dimer contact loop. The amino acid residue at position 41 plays an important role in the dimer-dimer interactions of the protein-ssDNA complex. Two Y41 mutant structures have been studied by X-ray crystallography. The Y41F GVP structure has been refined to an R-factor of 0.180 at 2.2-A resolution and is very similar to the wild-type (wt) structure (rmsd of all C alpha atoms = 0.30 A). In contrast, Y41H GVP forms a new crystal lattice in the space group P2(1)2(1)2(1) with a = 77.18 A, b = 84.17 A, and c = 28.62 A. Its structure has been solved by the molecular replacement method and refined to an R-factor of 0.170 at 2.5-A resolution. The two monomers of Y41H are crystallographically independent, and their structures remain similar to wt-GVP but with significant differences, particularly in the DNA-binding hairpin region. In both crystals, the loop (residues 36-43) that contains the Y41 residue is involved in the crystal dimer packings but in a different manner. The dimer-dimer contacts found in the wt-GVP crystal may be important for GVP aggregation in the absence of DNA. In the presence of DNA, the dimer-dimer contacts may switch to the type found in the Y41H crystal, allowing the GVP-ssDNA complex to form cooperatively. A model of the complex, consistent with existing biochemical and biophysical data, has been constructed from those crystal packing data.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback