1WPN image
Deposition Date 2004-09-09
Release Date 2004-11-23
Last Version Date 2024-03-13
Entry Detail
PDB ID:
1WPN
Keywords:
Title:
Crystal structure of the N-terminal core of Bacillus subtilis inorganic pyrophosphatase
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
1.30 Å
R-Value Free:
0.16
R-Value Work:
0.13
R-Value Observed:
0.14
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Manganese-dependent inorganic pyrophosphatase
Gene (Uniprot):ppaC
Chain IDs:A, B
Chain Length:188
Number of Molecules:2
Biological Source:Bacillus subtilis
Primary Citation
Structural Studies of Metal Ions in Family II Pyrophosphatases: The Requirement for a Janus Ion
Biochemistry 43 14403 14411 (2004)
PMID: 15533045 DOI: 10.1021/bi0484973

Abstact

Family II inorganic pyrophosphatases (PPases) constitute a new evolutionary group of PPases, with a different fold and mechanism than the common family I enzyme; they are related to the "DHH" family of phosphoesterases. Biochemical studies have shown that Mn(2+) and Co(2+) preferentially activate family II PPases; Mg(2+) partially activates; and Zn(2+) can either activate or inhibit (Zyryanov et al., Biochemistry, 43, 14395-14402, accompanying paper in this issue). The three solved family II PPase structures did not explain the differences between the PPase families nor the metal ion differences described above. We therefore solved three new family II PPase structures: Bacillus subtilis PPase (Bs-PPase) dimer core bound to Mn(2+) at 1.3 A resolution, and, at 2.05 A resolution, metal-free Bs-PPase and Streptococcus gordonii (Sg-PPase) containing sulfate and Zn(2+). Comparison of the new and old structures of various family II PPases demonstrates why the family II enzyme prefers Mn(2+) or Co(2+), as an activator rather than Mg(2+). Both M1 and M2 undergo significant changes upon substrate binding, changing from five-coordinate to octahedral geometry. Mn(2+) and Co(2+), which readily adopt different coordination states and geometries, are thus favored. Combining our structures with biochemical data, we identified M2 as the high-affinity metal site. Zn(2+) activates in the M1 site, where octahedral geometry is not essential for catalysis, but inhibits in the M2 site, because it is unable to assume octahedral geometry but remains trigonal bipyramidal. Finally, we propose that Lys205-Gln81-Gln80 form a hydrophilic channel to speed product release from the active site.

Legend

Protein

Chemical

Disease

Primary Citation of related structures