1VBF image
Deposition Date 2004-02-25
Release Date 2004-08-10
Last Version Date 2024-11-20
Entry Detail
PDB ID:
1VBF
Keywords:
Title:
Crystal structure of protein L-isoaspartate O-methyltransferase homologue from Sulfolobus tokodaii
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.80 Å
R-Value Free:
0.25
R-Value Work:
0.20
Space Group:
F 2 3
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:231aa long hypothetical protein-L-isoaspartate O-methyltransferase
Gene (Uniprot):pcm
Chain IDs:A, B, C, D
Chain Length:231
Number of Molecules:4
Biological Source:Sulfolobus tokodaii
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET SELENOMETHIONINE
Primary Citation
How Oligomerization Contributes to the Thermostability of an Archaeon Protein: PROTEIN L-ISOASPARTYL-O-METHYLTRANSFERASE FROM SULFOLOBUS TOKODAII
J.Biol.Chem. 279 32957 32967 (2004)
PMID: 15169774 DOI: 10.1074/jbc.M404405200

Abstact

To study how oligomerization may contribute to the thermostability of archaeon proteins, we focused on a hexameric protein, protein L-isoaspartyl-O-methyltransferase from Sulfolobus tokodaii (StoPIMT). The crystal structure shows that StoPIMT has a distinctive hexameric structure composed of monomers consisting of two domains: an S-adenosylmethionine-dependent methyltransferase fold domain and a C-terminal alpha-helical domain. The hexameric structure includes three interfacial contact regions: major, minor, and coiled-coil. Several C-terminal deletion mutants were constructed and characterized. The hexameric structure and thermostability were retained when the C-terminal alpha-helical domain (Tyr(206)-Thr(231)) was deleted, suggesting that oligomerization via coiled-coil association using the C-terminal alpha-helical domains did not contribute critically to hexamerization or to the increased thermostability of the protein. Deletion of three additional residues located in the major contact region, Tyr(203)-Asp(204)-Asp(205), led to a significant decrease in hexamer stability and chemico/thermostability. Although replacement of Thr(146) and Asp(204), which form two hydrogen bonds in the interface in the major contact region, with Ala did not affect hexamer formation, these mutations led to a significant decrease in thermostability, suggesting that two residues in the major contact region make significant contributions to the increase in stability of the protein via hexamerization. These results suggest that cooperative hexamerization occurs via interactions of "hot spot" residues and that a couple of interfacial hot spot residues are responsible for enhancing thermostability via oligomerization.

Legend

Protein

Chemical

Disease

Primary Citation of related structures