1UER image
Deposition Date 2003-05-20
Release Date 2004-05-20
Last Version Date 2023-12-27
Entry Detail
PDB ID:
1UER
Keywords:
Title:
Crystal structure of Porphyromonas gingivalis SOD
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.60 Å
R-Value Free:
0.25
R-Value Work:
0.23
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:superoxide dismutase
Gene (Uniprot):sodB
Chain IDs:A, B, C, D
Chain Length:191
Number of Molecules:4
Biological Source:Porphyromonas gingivalis
Ligand Molecules
Primary Citation
Pronounced conversion of the metal-specific activity of superoxide dismutase from Porphyromonas gingivalis by the mutation of a single amino acid (Gly155Thr) located apart from the active site
Biochemistry 42 10790 10799 (2003)
PMID: 12962504 DOI: 10.1021/bi0349625

Abstact

Glycine 155, which is located approximately 10 A from the active metal sites, is mostly conserved in aligned amino acid sequences of manganese-specific superoxide dismutases (Mn-SODs) and cambialistic SOD (showing the same activity with Fe and Mn) from Porphyromonas gingivalis, but is substituted for threonine in most Fe-SODs. Since Thr155 is located between Trp123 and Trp125, and Trp123 is one member of the metal-surrounding aromatic amino acids, there is a possibility that the conversion of this amino acid may cause a conversion of the metal-specific activity of cambialistic P. gingivalis SOD. To clarify this possibility, we have prepared a mutant of the P. gingivalis SOD with conversion of Gly155 to Thr. The ratios of the specific activities of Fe- to Mn-reconstituted enzyme, which are measured by the xanthine oxidase/cytochrome c method, increased from 0.6 in the wild-type to 11.2 in the mutant SODs, indicating the conversion of the metal-specific activity of the enzyme from a cambialistic type to an Fe-specific type. The visible absorption spectra of the Fe- and Mn-reconstituted mutant SODs closely resembled those of Fe-specific SOD. Furthermore, the EPR spectra of the Fe- and Mn-reconstituted mutant SODs also closely resembled those of Fe-specific SOD. Three-dimensional structures of the Fe-reconstituted wild-type SOD and Mn-reconstituted mutant SOD have been determined at 1.6 A resolution. Both structures have identical conformations, orientations of residues involved in metal binding, and hydrogen bond networks, while the side chain of Trp123 is moved further toward the metal-binding site than in wild-type SOD. A possible contribution of the structural differences to the conversion of the metal-specific activity through rearrangement of the hydrogen bond network among Trp123, Gln70, Tyr35, and the metal-coordinated solvent is discussed.

Legend

Protein

Chemical

Disease

Primary Citation of related structures