1U9J image
Deposition Date 2004-08-09
Release Date 2004-10-26
Last Version Date 2023-08-23
Entry Detail
PDB ID:
1U9J
Keywords:
Title:
Crystal Structure of E. coli ArnA (PmrI) Decarboxylase Domain
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.40 Å
R-Value Free:
0.24
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 41 3 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Hypothetical protein yfbG
Gene (Uniprot):arnA
Chain IDs:A
Chain Length:358
Number of Molecules:1
Biological Source:Escherichia coli
Ligand Molecules
Primary Citation
Crystal Structure of Escherichia coli ArnA (PmrI) Decarboxylase Domain. A Key Enzyme for Lipid A Modification with 4-Amino-4-deoxy-l-arabinose and Polymyxin Resistance
Biochemistry 43 13370 13379 (2004)
PMID: 15491143

Abstact

Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa can modify the structure of lipid A in their outer membrane with 4-amino-4-deoxy-l-arabinose (Ara4N). Such modification results in resistance to cationic antimicrobial peptides of the innate immune system and antibiotics such as polymyxin. ArnA is a key enzyme in the lipid A modification pathway, and its deletion abolishes both the Ara4N-lipid A modification and polymyxin resistance. ArnA is a bifunctional enzyme. It can catalyze (i) the NAD(+)-dependent decarboxylation of UDP-glucuronic acid to UDP-4-keto-arabinose and (ii) the N-10-formyltetrahydrofolate-dependent formylation of UDP-4-amino-4-deoxy-l-arabinose. We show that the NAD(+)-dependent decarboxylating activity is contained in the 360 amino acid C-terminal domain of ArnA. This domain is separable from the N-terminal fragment, and its activity is identical to that of the full-length enzyme. The crystal structure of the ArnA decarboxylase domain from E. coli is presented here. The structure confirms that the enzyme belongs to the short-chain dehydrogenase/reductase (SDR) family. On the basis of sequence and structure comparisons of the ArnA decarboxylase domain with other members of the short-chain dehydrogenase/reductase (SDR) family, we propose a binding model for NAD(+) and UDP-glucuronic acid and the involvement of residues T(432), Y(463), K(467), R(619), and S(433) in the mechanism of NAD(+)-dependent oxidation of the 4''-OH of the UDP-glucuronic acid and decarboxylation of the UDP-4-keto-glucuronic acid intermediate.

Legend

Protein

Chemical

Disease

Primary Citation of related structures