1U0X image
Deposition Date 2004-07-14
Release Date 2004-07-20
Last Version Date 2024-11-06
Entry Detail
PDB ID:
1U0X
Title:
Crystal structure of nitrophorin 4 under pressure of xenon (200 psi)
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
1.45 Å
R-Value Free:
0.17
R-Value Work:
0.14
R-Value Observed:
0.14
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Nitrophorin 4
Chain IDs:A
Chain Length:184
Number of Molecules:1
Biological Source:Rhodnius prolixus
Primary Citation
Structural dynamics controls nitric oxide affinity in nitrophorin 4
J.Biol.Chem. 279 39401 39407 (2004)
PMID: 15258143 DOI: 10.1074/jbc.M406178200

Abstact

Nitrophorin 4 (NP4) is one of seven nitric oxide (NO) transporting proteins in the blood-sucking insect Rhodnius prolixus. In its physiological function, NO binds to a ferric iron centered in a highly ruffled heme plane. Carbon monoxide (CO) also binds after reduction of the heme iron. Here we have used Fourier transform infrared spectroscopy at cryogenic temperatures to study CO and NO binding and migration in NP4, complemented by x-ray cryo-crystallography on xenon-containing NP4 crystals to identify cavities that may serve as ligand docking sites. Multiple infrared stretching bands of the heme-bound ligands indicate different active site conformations with varying degrees of hydrophobicity. Narrow infrared stretching bands are observed for photodissociated CO and NO; temperature-derivative spectroscopy shows that these bands are associated with ligand docking sites close to the extremely reactive heme iron. No rebinding from distinct secondary sites was detected, although two xenon binding cavities were observed in the x-ray structure. Photolysis studies at approximately 200 K show efficient NO photoproduct formation in the more hydrophilic, open NP4 conformation. This result suggests that ligand escape is facilitated in this conformation, and blockage of the active site by water hinders immediate reassociation of NO to the ferric iron. In the closed, low-pH conformation, ligand escape from the active site of NP4 is prevented by an extremely reactive heme iron and the absence of secondary ligand docking sites.

Legend

Protein

Chemical

Disease

Primary Citation of related structures