1SOT image
Deposition Date 2004-03-15
Release Date 2004-06-08
Last Version Date 2024-10-16
Entry Detail
PDB ID:
1SOT
Keywords:
Title:
Crystal Structure of the DegS stress sensor
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Method Details:
Experimental Method:
Resolution:
2.30 Å
R-Value Free:
0.24
R-Value Work:
0.19
R-Value Observed:
0.20
Space Group:
C 1 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Protease degS
Chain IDs:A, B, C
Chain Length:320
Number of Molecules:3
Biological Source:Escherichia coli
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET SELENOMETHIONINE
Primary Citation
Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease
Cell(Cambridge,Mass.) 117 483 494 (2004)
PMID: 15137941 DOI: 10.1016/S0092-8674(04)00454-4

Abstact

Gram-negative bacteria respond to misfolded proteins in the cell envelope with the sigmaE-driven expression of periplasmic proteases/chaperones. Activation of sigmaE is controlled by a proteolytic cascade that is initiated by the DegS protease. DegS senses misfolded protein in the periplasm, undergoes autoactivation, and cleaves the antisigma factor RseA. Here, we present the crystal structures of three distinct states of DegS from E. coli. DegS alone exists in a catalytically inactive form. Binding of stress-signaling peptides to its PDZ domain induces a series of conformational changes that activates protease function. Backsoaking of crystals containing the DegS-activator complex revealed the presence of an active/inactive hybrid structure and demonstrated the reversibility of activation. Taken together, the structural data illustrate in molecular detail how DegS acts as a periplasmic stress sensor. Our results suggest a novel regulatory role for PDZ domains and unveil a novel mechanism of reversible protease activation.

Legend

Protein

Chemical

Disease

Primary Citation of related structures