1SO3 image
Deposition Date 2004-03-12
Release Date 2004-06-08
Last Version Date 2024-11-20
Entry Detail
PDB ID:
1SO3
Keywords:
Title:
Crystal structure of H136A mutant of 3-keto-L-gulonate 6-phosphate decarboxylase with bound L-threonohydroxamate 4-phosphate
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.19
R-Value Work:
0.14
R-Value Observed:
0.15
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:3-keto-L-gulonate 6-phosphate decarboxylase
Gene (Uniprot):ulaD
Mutations:His136Ala
Chain IDs:A, B
Chain Length:216
Number of Molecules:2
Biological Source:Escherichia coli
Primary Citation
Evolution of Enzymatic Activities in the Orotidine 5'-Monophosphate Decarboxylase Suprafamily: Crystallographic Evidence for a Proton Relay System in the Active Site of 3-Keto-l-gulonate 6-Phosphate Decarboxylase(,)
Biochemistry 43 6438 6446 (2004)
PMID: 15157078 DOI: 10.1021/bi0497392

Abstact

3-Keto-L-gulonate 6-phosphate decarboxylase (KGPDC), a member of the orotidine monophosphate decarboxylase (OMPDC) suprafamily, catalyzes the Mg(2+)-dependent decarboxylation of 3-keto-L-gulonate 6-phosphate to L-xylulose 5-phosphate. Structural and biochemical evidence suggests that the KGPDC reaction proceeds via a Mg(2+)-stabilized 1,2-cis-enediolate intermediate. Protonation of the enediolate intermediate occurs in a nonstereospecific manner to form L-xylulose 5-phosphate. Although the exact mechanism of proton delivery is not known, Glu112, His136, and Arg139 have been implicated in this process [Yew, W. S., Wise, E., Rayment, I., and Gerlt, J. A. (2004) Biochemistry 43, 6427-6437]. Surprisingly, single amino acid substitutions of these positions do not substantially reduce catalytic activity but rather alter the stereochemical course of the reaction. Here, we report the X-ray crystal structures of four mutants, K64A, H136A, E112Q, and E112Q/H136A, each determined in the presence of L-threonohydroxamate 4-phosphate, an analogue of the enediolate intermediate, to 1.7, 1.9, 1.8, and 1.9 A resolution, respectively. These structures reveal that substitutions of Lys64, Glu112, and His136 cause changes in the positions of the intermediate analogue and two active site water molecules that were previously identified as possible proton donors. These changes correlate with the observed alterations in the reaction stereochemistry for these mutants, thereby supporting a reaction mechanism in which water molecules competitively shuttle protons from the side chains of His136 and Arg139 to alternate faces of the cis-enediolate intermediate. These studies further underscore the wide variation in the reaction mechanisms in the OMPDC suprafamily.

Legend

Protein

Chemical

Disease

Primary Citation of related structures