1SLQ image
Entry Detail
PDB ID:
1SLQ
Keywords:
Title:
Crystal structure of the trimeric state of the rhesus rotavirus VP4 membrane interaction domain, VP5CT
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2004-03-06
Release Date:
2004-08-31
Method Details:
Experimental Method:
Resolution:
3.20 Å
R-Value Free:
0.33
R-Value Work:
0.30
R-Value Observed:
0.31
Space Group:
P 42 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:VP4
Chain IDs:A, B, C, D, E, F
Chain Length:278
Number of Molecules:6
Biological Source:Rhesus rotavirus
Ligand Molecules
Primary Citation
Structural rearrangements in the membrane penetration protein of a non-enveloped virus.
Nature 430 1053 1058 (2004)
PMID: 15329727 DOI: 10.1038/nature02836

Abstact

Non-enveloped virus particles (those that lack a lipid-bilayer membrane) must breach the membrane of a target host cell to gain access to its cytoplasm. So far, the molecular mechanism of this membrane penetration step has resisted structural analysis. The spike protein VP4 is a principal component in the entry apparatus of rotavirus, a non-enveloped virus that causes gastroenteritis and kills 440,000 children each year. Trypsin cleavage of VP4 primes the virus for entry by triggering a rearrangement that rigidifies the VP4 spikes. We have determined the crystal structure, at 3.2 A resolution, of the main part of VP4 that projects from the virion. The crystal structure reveals a coiled-coil stabilized trimer. Comparison of this structure with the two-fold clustered VP4 spikes in a approximately 12 A resolution image reconstruction from electron cryomicroscopy of trypsin-primed virions shows that VP4 also undergoes a second rearrangement, in which the oligomer reorganizes and each subunit folds back on itself, translocating a potential membrane-interaction peptide from one end of the spike to the other. This rearrangement resembles the conformational transitions of membrane fusion proteins of enveloped viruses.

Legend

Protein

Chemical

Disease

Primary Citation of related structures